Role of Bi/Te co-dopants on the thermoelectric properties of SnSe polycrystals: an experimental and theoretical investigation

Author:

Shankar Manasa R.,Prabhu A. N.ORCID,Ashok Anuradha M.,Davis Nithya,Srinivasan Bhuvanesh,Mishra Vikash

Abstract

AbstractA sustainable solution to the energy crisis may be found in thermoelectric materials and generators, capable of transforming thermal energy into electrical energy or vice versa. SnSe is one of the emerging thermoelectric materials with distinctive properties. The main advantages of this compound are earth-abundant, inexpensive, non-toxic and it is also known for its high thermoelectric performance. Here we prepared Bi/Te co-doped SnSe polycrystals; whereas, Bi and Te are added with different compositions such as (x = 0.0,0.02,0.04,0.06 and y = 0.03) in (Sn1-xBixSe1-YTeY) matrix by using the solid-state reaction method. XRD data confirms the samples belong to the orthorhombic crystal system with the Pnma space group. DFT calculations were used to see structural stability and electronic properties for pure and doped SnSe samples. Temperature-dependent semiconducting behavior of the samples has been demonstrated by electrical resistivity. The Seebeck coefficient, correlated with carrier concentration and mobility, validates the p-type behavior for the pristine samples and the n-type behavior for co-doped samples. The dominant behavior of phonon scattering has been demonstrated by thermal conductivity analysis. After co-doping there is decrement in total thermal conductivity was observed which 1.3 times lower than SnSe. A theoretical calculation was used to validate experimental results to estimate electrical properties, Seebeck coefficient, specific heat capacity, thermal conductivity, and power factor using Quantum espresso code with Boltzmann transport Equation. 4% Bi-doped sample displayed a significant increment in electrical conductivity and an enhanced Seebeck coefficient, which led to the power factor enhancement of approximately 2.0 times in contrast to the pristine sample and enhanced ZT of about 0.055 which is 3.43 times higher than the pristine SnSe. Graphical abstract

Funder

Manipal Academy of Higher Education

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3