Review of Chalcogenide-Based Materials for Low-, Mid-, and High-Temperature Thermoelectric Applications

Author:

Puthran Suchitra,Hegde Ganesh Shridhar,Prabhu Ashwatha NarayanaORCID

Abstract

AbstractThermoelectric materials possess the capability to convert electricity into heat and vice versa. The utilization of chlorofluorocarbons and hydrochlorofluorocarbons as thermal carrier agents in traditional cooling and air conditioning systems has sparked a surge in exploration toward pioneering refrigeration and spatial conditioning technologies. Chalcogenides, known for their capacity to amplify the thermoelectric efficiency of materials and their adaptability across a broad spectrum of temperatures, stand out as pivotal components in thermoelectric materials. Despite their existing suboptimal performance, these materials hold substantial promise as power generators and as solid-state Peltier coolers, attracting significant attention and positioning them as subjects ripe for further investigation. Categorized into alkali or alkaline earth, transition metal, and main-group chalcogenides, these materials and their respective subclasses are meticulously scrutinized to pinpoint the most suitable thermoelectric materials for specific applications with an optimal operational temperature span. In the quest for energy-efficient technologies characterized by simple designs, absence of moving components, and superior stability, thermoelectric materials play a crucial role. This review highlights the advancements in theoretical parameters as well as the figure of merit (ZT) of chalcogenide materials, emphasizing their device applications. These insights are intended to provide viable future approaches to mainstream thermoelectric materials. This review reveals that Cu2Se achieves a maximum ZT value of 2.66 at 1039 K, marking it as the top performer among transition metal chalcogenides. Conversely, SnSe, a main-group metal monochalcogenide, exhibits a ZT value of 2.8 at 773 K, whereas nanowires of the main group of bismuth chalcogenides exhibit a ZT value of 2.5 at 350 K.

Funder

Manipal Academy of Higher Education, Manipal

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3