General Analysis of the Shape of Two Similar Second-Order Surfaces’ Intersection Line

Author:

Ivaschenko A.1,Vavanov D.1

Affiliation:

1. Moscow State University of Civil Engineering

Abstract

The presented paper is devoted to classification questions of fourth-order spatial curves, obtained as a result of intersection of non-degenerate second-order surfaces (quadrics) from the point of view of the forms of the original quadrics generating this curve. At the beginning of the paper is performed a brief historical overview of appearance of well-known and widely used curves ranging from ancient times and ending with the current state in the theory of curves and surfaces. Then a general analysis of the influence of the shape parameters and the relative position of original surfaces on the shape of the resulting curve and some of its parameters (number of components, presence of singular points, curve components flatness or spatiality) is carried out. Curves obtained as a result of intersection of equitype surfaces are described in more detail. The concept of interacting surfaces is introduced, various possible cases of the forms of the quadrics generating the curve are analyzed. A classification of fourth-order curves based on the shape parameters and relative position of second-order surfaces is proposed as an option. Illustrations of the resulting curve shapes with different shape parameters and location of generating quadrics are given. All surfaces and curves are considered in real affine space, taking into account the possibility of constructing them using descriptive geometry methods. Possible further research directions related to the analysis of the curves under discussion are briefly considered. In addition, are expressed hypotheses related to these curves use in the process of studying by students of technical universities the courses in analytical geometry, descriptive geometry, differential geometry and computer graphics. The main attention is paid to forms, therefore a wide variability of the surface shape in the framework of its described equation has been shown, provided by various values of numerical parameters.

Publisher

Infra-M Academic Publishing House

Reference32 articles.

1. Аминов Ю.А. Дифференциальная геометрия и топология кривых [Текст]: монография / Ю.А. Аминов — М.: Изд-во ЛЕНАНД, 2018. — 168 с., Aminov Yu.A. Differencial'naya geometriya i topologiya krivyh [Tekst]: monografiya / Yu.A. Aminov — M.: Izd-vo LENAND, 2018. — 168 s.

2. Боровиков И.Ф., Иванов Г.С., Суркова Н.Г. О применении преобразований при решении задач начертательной геометрии [Текст] / И.Ф. Боровиков, Г.С. Иванов, Н.Г. Суркова // Геометрия и графика. — 2018. — Т.6. — № 2. — С. 78–84. — DOI: 10.12737/article_5b55a35d683a33.30813949., Borovikov I.F., Ivanov G.S., Surkova N.G. O primenenii preobrazovaniy pri reshenii zadach nachertatel'noy geometrii [Tekst] / I.F. Borovikov, G.S. Ivanov, N.G. Surkova // Geometriya i grafika. — 2018. — T.6. — № 2. — S. 78–84. — DOI: 10.12737/article_5b55a35d683a33.30813949.

3. Бойков А.А. К вопросу о методике использования алгоритмов при решении задач начертательной геометрии [Текст] / А.А. Бойков, А.А. Сидоров, А.М. Федотов // Геометрия и графика. — 2018. — Т. 6. — № 3. — С. 56–68. — DOI: 10.12737/article_5bc45add9a2b21.45929543., Boykov A.A. K voprosu o metodike ispol'zovaniya algoritmov pri reshenii zadach nachertatel'noy geometrii [Tekst] / A.A. Boykov, A.A. Sidorov, A.M. Fedotov // Geometriya i grafika. — 2018. — T. 6. — № 3. — S. 56–68. — DOI: 10.12737/article_5bc45add9a2b21.45929543.

4. Бронштейн И.Н. Справочник по математике [Текст] / И.Н. Бронштейн, К.А. Семендяев — М.: Изд-во Наука, 1986. — 544 с., Bronshteyn I.N. Spravochnik po matematike [Tekst] / I.N. Bronshteyn, K.A. Semendyaev — M.: Izd-vo Nauka, 1986. — 544 s.

5. Ваванов Д.А. Аналоги гиперболоидов в четырехмерном пространстве [Электронное издание] / Д.А. Ваванов, А.В. Иващенко // Журнал естественнонаучных исследований. — 2020. — Т. 5.— № 4. — С. 36–39., Vavanov D.A. Analogi giperboloidov v chetyrehmernom prostranstve [Elektronnoe izdanie] / D.A. Vavanov, A.V. Ivaschenko // Zhurnal estestvennonauchnyh issledovaniy. — 2020. — T. 5.— № 4. — S. 36–39.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3