On Application of Transformations at Descriptive Geometry’s Problems Solution

Author:

Боровиков И.1,Borovikov Ivan2,Иванов Геннадий1,Ivanov Gennadiy2,Суркова Н.1,Surkova N.2

Affiliation:

1. Московский государственный технический университет им. Н.Э. Баумана

2. Bauman Moscow State Technical University

Abstract

This publication is devoted to the application of transformations at descriptive geometry’s problems solution. Using parametric calculus lets rationally select the number of transformations in the drawing. In Cartesian coordinates, on condition that an identical coordinate plane exists, the difference between parameters of linear forms, given and converted ones, is equal to the number of transformations in the composition. In affine space under these conditions, this difference is equal to two. Based on parameters calculation the conclusion is confirmed that the method of rotation around the level line, as providing the transformation of the plane of general position to the level plane, is a composition of two transformations: replacement of projections planes and rotation around the projection line. In various geometries (affine, projective, algebraic ones, and topology) the types of corresponding transformations are studied. As a result of these transformations are obtained affine, projective, bi-rational and topologically equivalent figures respectively. Such transformations are widely used in solving of applied problems, for example, in the design of technical surfaces of dependent sections. At the same time, along with transformation invariants, the simplicity of the algorithm for constructing of corresponding figures should be taken into account, with the result that so-called stratified transformations are preferred. A sign of transformation’s stratification is a value of dimension for a set of corresponding points’ carriers. This fact explains the relative simplicity of the algorithm for constructing the corresponding points in such transformations. In this paper the use of stratified transformations when finding the points of intersection of a curve with a surface, as well as in the construction of surfaces with variable cross-section shape are considered. The given examples show stratification idea possibilities for solving the problems of descriptive geometry.

Publisher

Infra-M Academic Publishing House

Reference25 articles.

1. Андреев К.А. О геометрических соответствиях в применении к вопросу о построении кривых линий [Текст] / К.А. Андреев. — М.: Изд-во МГУ, 1979. — 166 с., Andreev K.A. O geometricheskih sootvetstvijah v primenenii k voprosu o postroenii krivyh linij [About geometric correspondences in application to the question of the construction of curved lines]. Moscow, MGU Publ., 1979. 166 p. (in Russian)

2. Божко А.Н. Компьютерная графика [Текст] / А.Н. Божко, Д.М. Жук, В.Б. Маничев. — М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. — 396 с., Bozhko A.N., Zhuk D.M., Manichev V.B. Komp'juternaja grafika [Computer graphics]. Moscow, MGTU Publ., 2007. 396 p. (in Russian)

3. Боровиков И.Ф. Конструирование сопрягающих гиперповерхностей на основе расслояемых преобразований [Текст]: автореф. дис. ... канд. техн. наук / И.Ф. Боровиков. — М., 1985. — 18 с., Borovikov I.F. Konstruirovanie soprjagajushhih giperpoverhnostej na osnove rasslojaemyh preobrazovanij. Kand. Diss. [The design of the interfacing hypersurfaces based on stratified transformations. Cand. Diss]. Moscow, 1985. 18 p. (in Russian)

4. Грязнов Я.А. Отсек каналовой поверхности как образ цилиндра в расслояемом образовании [Текст] / Я.А. Грязнов // Геометрия и графика. — 2013. — Т. 1. — № 1. — C. 17–19. — DOI: 10.12737/463., Gryaznov Ya.A. Otsek kanalovoy poverkhnosti kak obraz tsilindra v rassloyaemom obrazovanii [A compartment of the channel surface as an image of a cylinder in a stratified formation]. Geometriya i grafika [Geometry and graphics]. 2013, V. 1, I. 1, pp. 17–19. DOI: 10.12737/463. (in Russian)

5. Гузненков В.Н. Autodesk Inventor 2016. Трехмерное моделирование деталей и выполнение электронных чертежей. [Текст] / В.Н. Гузненков, П.А. Журбенко, Е.В. Винцулина. — М.: ДМК Пресс, 2017. — 124 с., Guznenkov V.N., Zhurbenko P.A., Vintsulina E.V. Autodesk Inventor 2016. Trekhmernoe modelirovanie detaley i vypolnenie elektronnykh chertezhey [Autodesk Inventor 2016. Three-dimensional modeling of parts and execution of electronic drawings]. Moscow, DMK Press Publ., 2017. 124 p. (in Russian)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3