Affiliation:
1. Ulyanovsk Institute of civil aviation named after Chief Marshal of aviation B.P. Bugaev
Abstract
The problem of teaching and formulating the tasks for the “Applied Geometry” discipline is considered in this paper. Currently, in aviation high educational institutions there is a tendency to reduce the number of hours allocated to graphic disciplines; in addition, “Descriptive Geometry” – the habitual name of the discipline – has been replaced by name “Applied Geometry”. This is certainly connected with the transition to learning on undergraduate programs, that implies a competency-based approach, i.e., training in accordance with the necessary knowledge and methods of activity in a particular area [4; 9; 23; 29; 30; 34]. The planned results of learning in “Applied Geometry” include knowledge of methods for solving applied engineering-geometric problems, as well as the ability to use the basic elements of applied geometry and engineering graphics in professional activities, and to solve specific applied problems of geometric modeling [4; 14; 20; 22; 32]. For these reasons arises the question of the need to adapt “Descriptive Geometry” to the requirements and programs for the training of bachelors, bringing it to conformity with the name “Applied Geometry” of the discipline. According to the results of “Applied Geometry” studying, students ought to gain experience and have the ability to independently solve cognitive, organizational and other problems related to their future professional activities [28–30]. In this paper is proposed a general approach to the formulation of “Applied Geometry” problems for cadets pursuing a bachelor's degree in “Air Navigation” (25.03.03) and “Operation of Airports and Flight Support of Aircraft” (25.03.04). Using rather simple examples, has been considered the possibility to formulate the problem in such a way that instead of the traditional formulation it could be applied for a specific bachelor's degree. As well has been considered a complex applied problem, which is suitable as a task for performing a computational and graphic work, since it integrates several topics of the discipline.
Publisher
Infra-M Academic Publishing House
Reference38 articles.
1. Боровиков И.Ф. О применении преобразований при решении задач начертательной геометрии [Текст] / И.Ф. Боровиков, Г.С. Иванов, Н.Г. Суркова // Геометрия и графика. – 2018. – Т. 6. – № 2. – с. 3-22. – DOI: 10.12737/article_5b55a35d683a33.30813949., Borovikov I.F., Ivanov G.S., Surkova N.G. O primenenii preobrazovanij pri reshenii zadach nachertatel'noj geometrii [On applicatoin of transformations at diecriptive geometry’s problems solution.] Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 2, pp. 3–22. DOI: 10.12737/article_5b55a35d683a33.30813949. (in Russian)
2. Василевский А.Б. Методы решения геометрических задач. [Текст] / А.Б. Василевский. – Минск, «Вышейшая школа», 1969. – 232 с., Vasilevsky A.B. Metody resheniya geometricheskih zadach. [Methods for solving geometric problems]. Minsk, "Vysshaya shkola" Publ., 1969. 232 p. (in Russian)
3. Виноградов В.Н. Элементы начертательной геометрии (для факультативных занятий). Пособие для учащихся. [Текст] / В.Н. Виноградов, И.А. Ройтман – 2-е изд. перераб. – М.: Просвещение, 1978. – 175 с., Vinogradov V.N., Roitman I.A. Elementy nachertatel'noj geometrii (dlya fakul'tativnyh zanyatij). Posobie dlya uchashchihsya [Elements of descriptive geometry (for optional classes). Manual for students]. Moscow: Prosveshchenie Publ., 1978. 175 p. (in Russian)
4. Волкова М.Ю. Графическая грамотность инженера как способ получения фундаментальных профессиональных знаний [Текст] / М.Ю. Волкова, Е.В. Егорычева // Геометрия и графика. – 2013. – Т. 2. – № 1 – С. 53–57. – DOI: 10.12737/3849., Volkova M.Yu., Egorycheva E.V. Graficheskaya gramotnost' inzhenera kak sposob polucheniya fundamental'nyh professional'nyh znanij [Graphic literacy of an engineer as a way to obtain fundamental professional knowledge.] Geometriya i grafika [Geometry and Graphics]. 2013, V. 2, I. 1, pp. 53–57. DOI: 10.12737/3849. (in Russian)
5. Волошинов Д.В. Конструктивное геометрическое моделирование как перспектива преподавания графических дисциплин [Текст] / Д.В. Волошинов, К.Н. Соломонов // Геометрия и графика. – 2013. – Т. 1. – № 2 – С. 10-13. – DOI: 10.12737/778., Voloshinov D.V., Solomonov K.N. Konstruktivnoe geometricheskoe modelirovanie kak perspektiva prepodavaniya graficheskih disciplin [Constructive geometric modeling as a perspective of teaching graphic disciplines.] Geometriya i grafika [Geometry and Graphics]. 2013, V. 1, I. 2, pp. 10–13. DOI: 10.12737/778. (in Russian)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献