On the Procedure For Algorithms Using In Solving Descriptive Geometry Tasks

Author:

Бойков Алексей1,Boykov Aleksey2,Сидоров А.1,Sidorov A.2,Федотов А.1,Fedotov A.2

Affiliation:

1. Ивановский государственный энергетический университет имени В.И. Ленина (ИГЭУ)

2. Ivanovo State Power University named after V.I. Lenin (ISPU)

Abstract

In this paper the urgent problem of the formal approach to the teaching of descriptive geometry (DG) has been formulated. The authors consider the algorithm concept and approaches to formal description of methods (algorithms) for tasks solving. It is emphasized that the known methods for creating and presenting of algorithms for DG tasks solving do not reflect all possibilities of algorithmization as it is. In the third section the authors, in examples, emphasize the complexity of DG tasks solutions algorithmization. The diversity of solutions for one or another DG task is noted depending on location of initial figures that requires a suitable context analysis in solving, and, as a consequence, the algorithm choice. It is pointed out that the reason for this is different ways for expressing of figures’ geometric properties by means of drawing. General algorithms for applying the method of loci and geometric transformations to tasks solving are considered. From the loci position have been considered two basic tasks of DG: plotting a point drawing in the coordinates, and a perpendicular to the plane. The method of loci importance is emphasized in view of algorithms compilation simplicity and wide possibilities for tasks solving. The authors note that algorithmization does not reduce the importance of geometry knowledge or understanding of the tasks geometric content and used methods, but emphasizes the importance of the first stage for tasks solving — the stage of analysis at which basic decisions are made and its method is chosen. In conclusion it is emphasized that in the practice related to solving of DG educational tasks it is optimal to apply the algorithmization in point, as it enables to structure the course, operate with compact algorithms, and introduce automated technologies of constructive geometric modeling.

Publisher

Infra-M Academic Publishing House

Reference37 articles.

1. Аргунов Б.И. Геометрические построения на плоскости [Текст] / Б.И. Аргунов, М.Б. Балк. — М., 1957. — 268 с., Argunov B.I., Balk M.B. Geometricheskie postroeniya na ploskosti [Geometric constructions in the plane]. Moscow, 1957, 268 p. (in Russian)

2. Белосельская В.Д. Формирование системы приемов умственной деятельности студентов при изучении курса начертательной геометрии [Текст] / В.Д. Белосельская // Сборник науч.-метод. статей по НГ и ИГ. — М.: Высшая школа, 1978. — Вып. 6. — С. 6–10., Belosel'skaya V.D. Formirovanie sistemy priemov umstvennoj deyatel'nosti studentov pri izuchenii kursa nachertatel'noj geometrii [Formation of a system of receptions for students' mental activity in studying the course of descriptive geometry]. Sbornik nauchno-metodicheskih statej po NG i IG [Collection of scientific and methodical articles on descriptive geometry and engineering graphics]. Moscow, V. 6, 1978, pp. 6–10 (in Russian)

3. Боровиков И.Ф. О применении преобразований при решении задач начертательной геометрии [Текст] / И.Ф. Боровиков, Г.С. Иванов, Н.Г. Суркова // Геометрия и графика. — 2018. — Т. 6. — № 2. — С. 78–84. — DOI: 10.12737/article_5b55a35d683a33.30813949., Borovikov I.F., Ivanov G.S., Surkova N.G. O primenenii preobrazovanij pri reshenii zadach nachertatel'noj geometrii [On Application of Transformations at Descriptive Geometry’s Problems Solution]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 2. pp. 78–84. DOI: 10.12737/article_5b55a35d683a33.30813949. (in Russian)

4. Бородкина С.И. Обобщенные алгоритмы решения задач начертательной геометрии [Текст] / С.И. Бородкина // Сборник науч.-метод. статей по НГ и ИГ. — М.: Высшая школа, 1976. — Вып. 6. — С. 13–19., Borodkina S.I. Obobshchennye algoritmy resheniya zadach nachertatel'noj geometrii [Generalized algorithms for solving problems in descriptive geometry]. Sbornik nauchno-metodicheskih statej po NG i IG [Collection of scientific and methodical articles on descriptive geometry and engineering graphics]. Vol. 6, Moscow, 1976, pp 13–19. (in Russian)

5. Вальков К.И. Введение в теорию моделирования [Текст] / К.И. Вальков. — Л.: Изд-во ЛИСИ, 1973. — 152 с., Val'kov K.I. Vvedenie v teoriyu modelirovaniya [Introduction to the theory of modeling]. Leningrad, 1973. 152 p.

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3