Area of correct space coordination by normal conic coordinates

Author:

Nesnov Dmitriy11

Affiliation:

1. Samara State Technical University

Abstract

The field theory is widely represented in spherical and cylindrical coordinate systems, since the mathematical apparatus of these coordinate systems is well studied. Field sources with more complex structures require new approaches to their study. The purpose of this study is to determine the correct coordination of space by normal conic coordinates. This is necessary in subsequent studies, the task of which will be to simplify the expressions for the characteristics of the field by introducing a special coordination of space, which reflect the shape of the source and/or sink of the field. For example, a field with a rectilinear source is more convenient to refer to cylindrical coordinates, and a field with a point source - to spherical coordinates. Basically, the use of field theory in the study of physical processes by methods of applied geometry is limited to two classical curvilinear systems, although their presentation in arbitrary curvilinear coordinates is known. We will distinguish between global and local coordinate systems. The global system, as well as the coordinates of a point in this system, will be denoted by x, y, z. She is unchanging. The local system, as well as the coordinates of a point in this system, will be denoted by t, u, v. Local system variable. At each point in space belonging to the area of existence of the system, the local coordinate system is defined

Publisher

Infra-M Academic Publishing House

Subject

General Medicine

Reference26 articles.

1. Бердинский В.А. Об ортогональных криволинейных системах координат в пространствах постоянной кривизны [Текст] / В.А. Бердинский, И.П. Рыбников // Сибирский математический журнал. Сибирское отделение РАН, Институт математики им. С.Л. Соболева СО РАН. – 2011 – Т. 52. – № 3 – С. 502-511., Berdynsky V.A., Rybnikov I.P. Ob ortogonal'nykh krivolineynykh sistemakh koordinat v prostranstvakh postoyannoy krivizny [On orthogonal curvilinear coordinate systems in spaces of constant curvature]. Sibirskiy matematicheskiy zhurnal. Sibirskoye otdeleniye RAN, Institut matematiki im. S.L. Soboleva SO RAN [Siberian Mathematical Journal. Siberian Department of the Russian Academy of Sciences, Institute of Mathematics named S.L. Sobolev SB RAS]. 2011, V. 52, I. 3, pp. 502-511. (in Russian)

2. Булах Е.Г. Основы векторного анализа и теории поля [Текст] / Е.Г. Буллах, В.Н. Шуман - Киев: Наукова думка, 1998. – 300 с., Bulakh E.G., Schuman V.N. Osnovy vektornogo analiza i teorii polya [Fundamentals of vector analysis and field theory]. Kiev, Naukova Dumka Publ., 1998. 300 p. (in Russian)

3. Гирш А.Г. Окружности на комплексной плоскости [Текст] / А. Г.Гирш // Геометрия и графика. – 2020. – Т. 8. – № 4. – С. 3-12. – DOI: 10.12737/2308-4898-2021-8-4-3-12., Girsh A.G. Okruzhnosti na kompleksnoy ploskosti [Circles in the complex plane]. Geometriya i grafika. [Geometry and graphics]. 2020, V. 8, I. 4, pp. 3-12. DOI: 10.12737/2308-4898-2021-8-4-3-12. (in Russian)

4. Гузев М.А. Вывод уравнений градиентной теории в криволинейных координатах [Текст] / М.А. Гузев, Q.I. Chengzhi // Дальневосточный математический журнал. Институт прикладной математики ДВО РАН, Дальневосточный федеральный. – 2013 – Т. 13. – № 1 – С. 35-42., Guzev M.A., Chengzhi Q.I. Vyvod uravneniy gradiyentnoy teorii v krivolineynykh koordinatakh [Derivation of gradient theory equations in curvilinear coordinates]. Dal'nevostochnyy matematicheskiy zhurnal. Institut prikladnoy matematiki DVO RAN [Far Eastern Mathematical Journal. Institute of Applied Mathematics of the Far Eastern Federal District of the Russian Academy of Sciences]. 2013, V. 13, I. 1, pp. 35-42. (in Russian)

5. Ефремов А.В. Пространственные геометрические ячейки – квазимногогранники [Текст] / А.В. Ефремов, Т.А. Верещагина, Н.С. Кадыкова, В.В. Рустамян // Геометрия и графика. – 2021. – Т. 9. – № 3. – С. 30-38. – DOI: 10.12737/2308-4898-2021-9-3-30-38., Efremov A.V., Vereshchagina T.A., Kadykova N.S., Rustamyan V.V. Prostranstvennyye geometricheskiye yacheyki – kvazimnogogranniki [Spatial geometric sells – quasipolyhedra]. Geometriya i grafika. [Geometry and graphics]. 2021, V. 9, I. 3, pp. 30-38. DOI: 10.12737/2308-4898-2021-9-3-30-38. (in Russian)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3