Affiliation:
1. Kassel'skiy universitet
Abstract
Complex geometry consists of Euclidean E-geometry (circle geometry) and pseudo-Euclidean M-geometry (hyperbola geometry). Each of them individually determines an open system in which a correctly posed problem may give no solution. Analytical geometry is an example of a closed system, in which the previously mentioned problem always gives a solution as a complex number, whose one of the parts may turn out to be zero. Development of imaginary solutions and imaginary figures is a new task for descriptive geometry. Degenerated conics and quadrics set up a new class of figures and a new class of descriptive geometry’s problems. For example, a null circle, null sphere, null cylinder, and a cone as a hyperboloid degenerated to an asymptote. The last ones necessarily lead to imaginary solutions in geometric operations. In this paper it has been shown that theorems formulated in one geometry are also valid in conjugate geometry as well, while the same figures of conjugated geometries visually look different. So imaginary points exist only by pairs, the imaginary circle is not round one, the centers of dissimilar circles’ similarity do not belong to the centerline and other examples. For solution, a number of problems on geometric relations, and operations with degenerated conics and quadrics, as well as several problems from 4D-geometry are proposed. Solutions for above mentioned problems are given in section 9. In this paper some examples of new problems for descriptive geometry have been considered. It has been shown that the new problems require access to a complex space. New figures consist of two parts, a real figure and a figure of its imaginary complement.
Publisher
Infra-M Academic Publishing House
Reference20 articles.
1. Волошинов Д.В. Визуально-графическое проектирование единой конструктивной модели для решения аналогов задачи Аполлония с учетом мнимых геометрических образов [Текст] / Д.В. Волошинов // Геометрия и графика. – 2018. – Т. 6. – № 2. – С. 23-46. – DOI: 10.12737/article_5b559c70becf44.21848537., Voloshinov D.V. Vizual`no-graficheskoe proektirovanie edinoj konstruktivnoj modeli dlya resheniya analogov zadachi Apolloniya s uchetom mnimy`x geometricheskix obrazov [Visual and graphic design of a single structural model for solving the analogs of the Apollonius problem taking into account imaginary geometric images]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 2, pp. 23–46. – DOI: 10.12737/article_5b559c70becf44.21848537. (in Russian)
2. Волошинов Д.В. Единый конструктивный алгоритм построения фокусов кривых второго порядка [Текст] / Д.В. Волошинов // Геометрия и графика. – 2018. – Т. 6. – № 2. – С. 47-54. – DOI: 10.12737/article_5b559dc3551f95.26045830., Voloshinov D.V. Ediny`j konstruktivny`j algoritm postroeniya fokusov krivy`x vtorogo poryadka [Unified constructive algorithm for constructing foci of second-order curves]. Geometriya i grafika [Geometry and Graphics]. 2018, V. 6, I. 2, pp. 47–54. – DOI: 10.12737/article_5b559dc3551f95.26045830. (in Russian)
3. Гирш А.Г. Комплексная геометрия – евклидова и псевдоевклидова. – М.: ООО «ИПЦ "Маска"», 2013. – 216 с., Girsh A.G. Kompleksnaya geometriya — evklidova i psevdoevklidova [Complex geometry — Euclidean and pseudo-Euclidean]. Moscow, IPTs ≪Maska≫ Publ., 2013. 216 p. (in Russian)
4. Гирш А.Г. Мнимости в геометрии. [Текст] / А.Г. Гирш // Геометрия и графика. – 2014. – Т. 2. – № 2. –C. 3-8. – DOI: 10.12737/5583., Girsh A.G. Mnimosti v geometrii [Imaginaries in Geometry]. Geometriya i grafika [Geometry and Graphics]. 2014, V. 2, I. 2, pp. 3–8. DOI: 10.12737/5583. (in Russian)
5. Гирш А.Г. Наглядная мнимая геометрия. – М.: ООО «ИПЦ "Маска"», 2008. – 216 с., Girsh A.G. Naglyadnaya mnimaya geometriya [Transparent imaginary geometry]. Moscow, IPTs ≪Maska≫ Publ., 2008. 216 p. (in Russian)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献