Affiliation:
1. Omsk State Technical University
Abstract
In this paper are considered planar point sets generated by linear conditions, which are realized in rectangular or Manhattan metric. Linear conditions are those expressed by the finite sum of the products of distances by numerical coefficients. Finite sets of points and lines are considered as figures defining linear conditions. It has been shown that linear conditions can be defined relative to other planar figures: lines, polygons, etc. The design solutions of the following general geometric problem are considered: for a finite set of figures (points, line segments, polygons...) specified on a plane with a rectangular metric, which are in a common position, it is necessary to construct sets that satisfy any linear condition. The problems in which the given sets are point and segment ones have been considered in detail, and linear conditions are represented as a sum or as relations of distances. It is proved that solution result can be isolated points, broken lines, and areas on the plane. Sets of broken lines satisfying the given conditions form families of isolines for the given condition. An algorithm for building isoline families is presented. The algorithm is based on the Hanan lattice construction and the isolines behavior in each node and each sub-region of the lattice. For isoline families defined by conditions for relation of distances, some of their properties allowing accelerate their construction process are proved. As an example for application of the described theory, the problem of plane partition into regions corresponding to a given set of points, lines and other figures is considered. The problem is generalized problem of Voronoi diagram construction, and considered in general formulation. It means the next: 1) the problem is considered in rectangular metric; 2) all given points may be integrated in various figures – separate points, line segments, triangles, quadrangles etc.; 3) the Voronoi diagram’s property of proximity is changed for property of proportionality. Have been represented examples for plane partition into regions, determined by two-point sets.
Publisher
Infra-M Academic Publishing House
Reference30 articles.
1. Вышнепольский В.И. Геометрические места точек, равноотстоящих от двух заданных геометрических фигур. Часть 1 [Текст] / В.И. Вышнепольский, Н.А. Сальков, Е.В. Заварихина // Геометрия и графика. – 2017. – Т. 5. – № 3. – С. 21-35. – DOI https://doi.org/10.12737/article_59bfa3beb72932.73328568., Vyshnepolskii V.I., Salkov N.A., Zavarihina E.V. Geometricheskie mesta tochek, pavnootstoyaschih ot dvuh zadannyh geometricheskih figure. Chast 1. [Geometric location of points equidistant from two specified geometric shapes. Part 1]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 3, pp. 21–35. DOI 10.12737/article_59bfa3beb72932.73328568. (in Russian)
2. Вышнепольский В.И. Геометрические места точек, равноотстоящих от двух заданных геометрических фигур. Часть 2: геометрические места точек, равноудаленных от точки и конической поверхности [Текст] / В.И. Вышнепольский, Е.В. Заварихина, О.Л. Даллакян // Геометрия и графика. – 2017. – Т. 5. – № 4. – С. 15-23. – DOI https://doi.org/10.12737/article_5a17f9503d6f40.18070994., Vyshnepolskii V.I., Zavarihina E.V., Dallakyan Geometricheskie mesta tochek, pavnootstoyaschih ot dvuh zadannyh geometricheskih figure. Chast 2: geometricheskie mesta tochek, ravnoudalennyh ot tochki i konicheskoi poverhnosti. [Geometric location of points equidistant from two specified geometric shapes. Part 2]. Geometriya i grafika [Geometry and graphics]. 2017, V. 5, I. 4, pp. 15–23. DOI 10.12737/article_5a17f9503d6f40.18070994. (in Russian)
3. Вышнепольский В.И. Геометрические места точек, равноотстоящих от двух заданных геометрических фигур. Часть 3 [Текст] / В.И. Вышнепольский, К.А. Киршанов, К.Т. Егиазарян // Геометрия и графика. – 2018. – Т. 6. – № 4. – С. 3-19. – DOI https://doi.org/10.12737/article_5c21f207bfd6e4.78537377., Vyshnepolskii V.I., Kirshanov K.A., Egiazaryan K.T. Geometricheskie mesta tochek, pavnootstoyaschih ot dvuh zadannyh geometricheskih figure. Chast 3. [Geometric location of points equidistant from two specified geometric shapes. Part 3]. Geometriya i grafika [Geometry and graphics]. 2018, V. 6, I. 4, pp. 3–19. DOI 10.12737/article_5c21f207bfd6e4.78537377. (in Russian)
4. Глоговский В.В. Аналоги коник в метрике Lp [Текст] / В.В. Глоговский // Прикладная геометрия и инженерная графика. – 1978. – Вып. 25. – С. 34-37., Glogovskii V.V. Analogi conik v metrike Lp. [Analogy of conics in metrics Lp]. Prikladnaya geometriya i ingenernaya graphica [Applied geometry and engineering graphics]. 1978, V. 25, pp. 34–37. (in Russian)
5. Глоговский В.В. Аналоги коник в метрике Lp (Часть II) [Текст] / В.В. Глоговский // Прикладная геометрия и инженерная графика. – 1978. – Вып. 26. – С. 78-82., Glogovskii V.V. Analogi conik v metrike Lp (Chast II). [Analogy of conics in metrics Lp. Part 2]. Prikladnaya geometriya i ingenernaya graphica [Applied geometry and engineering graphics]. 1978, V. 26, pp. 78–82. (in Russian)