Loci of Points Equally Spaced From Two Given Geometrical Figures. Part 3

Author:

Вышнепольский Владимир1,Vyshnepol'skiy Vladimir2,Киршанов К.3,Kirshanov K.4,Егиазарян К.3,Egiazaryan K.5

Affiliation:

1. Московский технологический университет

2. Moscow Technological University

3. МИРЭА – Российский технологический университет

4. MIREA – Rossiyskiy tehnologicheskiy universitet

5. MIREA – Russian Technological University

Abstract

The loci (L) equally spaced from a sphere and a straight line, and from a conic surface and a plane, are considered. The following options have been considered. The straight line passes through the center of the sphere (a = 0), at the same time completely at spheres’ positive radiuses a surface of rotation is obtained, forming which the parabola is, and a rotation axis – this straight line. The parabola’s top forms the biggest parallel on the site points of intersection of the parabola’s forming with the rotation axis. Let's call such paraboloid a perpendicular paraboloid of rotation. The straight line crosses the sphere, but does not pass through the center (0 < a < R/2) – a perpendicular paraboloid, at that the surface is also completely obtained at radiuses’ positive values. The straight line is tangent to the sphere (a = R/2) – a surface which projections are parabolas, lemniscates and circles, and a piece from a tangency point to the sphere center – at radiuses positive values; a beam from the sphere center, perpendicular to this straight line – at radiuses negative values, at that the beam and the piece belong to one straight line. The straight line lies out of the sphere (α > R/2) – two different surfaces, having the general properties with a hyperbolic paraboloid, are obtained, one of which is obtained at radius positive values, and another one – at radius negative values. It has been noticed that loci, equally spaced from a sphere and a straight line, and from a cylinder and a point, coincide at equal radiuses and distances from axes to points and straight lines if to take into account the surfaces obtained both at positive, and negative values of radiuses. Locus, equally spaced from the conic surface of rotation and the plane, are two elliptic conic surfaces which in case 7.4.1 degenerate in the conic surfaces of rotation. In cases 7.4.3 and 7.4.4 one elliptic conic surface degenerates in a plane and a parabolic cylinder respectively.

Publisher

Infra-M Academic Publishing House

Reference29 articles.

1. Александров И.И. Сборник геометрических задач на построение с решениями [Текст] / И.И. Александров. — М.: УРСС 2004. — 176 с., Aleksandrov I.I. Sbornik geometricheskih zadach na postroenie s reshenijami [The collection of geometrical tasks on construction with decisions]. Moscow, URSS Publ., 2004. 176 p. (in Russian)

2. Волков В.Я. Курс начертательной геометрии на основе геометрического моделирования [Текст]: учебник / В.Я. Волков — Омск: Изд-во СибАДИ, 2010. — 252 с., Volkov V.Ja. Kurs nachertatel'noj geometrii na osnove geometricheskogo modelirovanija [Course of descriptive geometry on the basis of geometrical modeling]. Omsk, SibADI Publ., 2010. 252 p. (in Russian)

3. Волков В.Я. Сборник задач и упражнений по начертательной геометрии (к учебнику «Курс начертательной геометрии на основе геометрического моделирования») [Текст] / В.Я. Волков, В.Ю. Юрков, К.Л. Панчук, Н.В. Кайгородцева. — Омск: Изд-во СибАДИ, 2010. — 74 с., Volkov V.Ja., Jurkov V.Ju., Panchuk K.L. Kajgorodtseva N.V. Sbornik zadach i uprazhnenij po nachertatel'noj geometrii [The collection of tasks and exercises on descriptive geometry]. Omsk, SibADI Publ., 2010. 74 p. (in Russian)

4. Выгодский М.Я. Аналитическая геометрия [Текст] / М.Я. Выгодский. — М.: Физматгиз, 1963. — 523 с., Vygodskij M.Ja. Analiticheskaja geometrija [Analytical geometry]. Moscow, Fizmatgiz Publ., 1963. 523 p. (in Russian)

5. Вышнепольский В.И. Всероссийский студенческий конкурс «Инновационные разработки» [Текст] / В.И. Вышнепольский, Н.С. Кадыкова, Н.И. Прокопов // Геометрия и графика. — 2016. — Т. 4. — № 4. — С. 69–86. — DOI: 10.12737/22842., Vyshnepol'skij V.I., Kadykova N.S., Prokhorov N.I. Vserossijskij studencheskij konkurs «Innovatsionnye razrabotki» [All-Russian student's competition "Innovative Developments"]. Geometrija i grafika [Geometry and Graphics]. 2016, V. 4, I. 4, pp. 69–86. (in Russian) DOI: 10.12737/22842

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3