A study of concept similarity in Wikidata

Author:

Ilievski Filip1,Shenoy Kartik1,Chalupsky Hans1,Klein Nicholas1,Szekely Pedro1

Affiliation:

1. Information Sciences Institute, University of Southern California, CA, USA

Abstract

Robust estimation of concept similarity is crucial for applications of AI in the commercial, biomedical, and publishing domains, among others. While the related task of word similarity has been extensively studied, resulting in a wide range of methods, estimating concept similarity between nodes in Wikidata has not been considered so far. In light of the adoption of Wikidata for increasingly complex tasks that rely on similarity, and its unique size, breadth, and crowdsourcing nature, we propose that conceptual similarity should be revisited for the case of Wikidata. In this paper, we study a wide range of representative similarity methods for Wikidata, organized into three categories, and leverage background information for knowledge injection via retrofitting. We measure the impact of retrofitting with different weighted subsets from Wikidata and ProBase. Experiments on three benchmarks show that the best performance is achieved by pairing language models with rich information, whereas the impact of injecting knowledge is most positive on methods that originally do not consider comprehensive information. The performance of retrofitting is conditioned on the selection of high-quality similarity knowledge. A key limitation of this study, similar to prior work lies in the limited size and scope of the similarity benchmarks. While Wikidata provides an unprecedented possibility for a representative evaluation of concept similarity, effectively doing so remains a key challenge.

Publisher

IOS Press

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3