A semantic metric for concepts similarity in knowledge graphs

Author:

Alkhamees Majed A1ORCID,Alnuem Mohammed A1,Al-Saleem Saleh M1,Al-Ssulami Abdulrakeeb M2

Affiliation:

1. Department of Information Systems, King Saud University, Saudi Arabia

2. Department of Computer Science, Taiz University, Yemen

Abstract

Semantic similarity between concepts concerns expressing the degree of similarity in meaning between two concepts in a computational model. This problem has recently attracted considerable attention from researchers in attempting to automate the understanding of word meanings to expedite the classification of users’ opinions and attitudes embedded in text. In this article, a semantic similarity metric is presented. The proposed metric, namely, weighted information-content ( wic), exploits the information content of the least common subsumer of two compared concepts and the depth information in knowledge graphs such as DBPedia and YAGO. The two similarity components were combined using calibrated cooperative contributions from both similarity components. A statistical test using the Spearman correlations on well-known human judgement word-similarity data sets showed that the wic metric produced more highly correlated similarities compared with state-of-the-art metrics. In addition, a real-world aspect category classification was evaluated, which exhibited further increased accuracy and recall.

Publisher

SAGE Publications

Subject

Library and Information Sciences,Information Systems

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A study of concept similarity in Wikidata;Semantic Web;2024-05-14

2. Enhancing Misinformation Detection through Semantic Analysis and Knowledge Graphs;2024 4th International Conference on Data Engineering and Communication Systems (ICDECS);2024-03-22

3. StructSim: Meta-Structure-Based Similarity Measure in Heterogeneous Information Networks;Applied Sciences;2024-01-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3