1. Alshargi, F., et al.: Concept2vec: metrics for evaluating quality of embeddings for ontological concepts. arXiv preprint arXiv:1803.04488 (2018)
2. Bordes, A., et al.: Translating embeddings for modeling multi-relational data. In: Proceedings of the 26th International Conference on Neural Information Processing Systems - Volume 2. NIPS’13, Lake Tahoe, Nevada, pp. 2787–2795. Curran Associates Inc. (2013)
3. Boschin, A., et al.: Combining embeddings and rules for fact prediction. In: International Research School in Artificial Intelligence in Bergen (2022)
4. Bouraoui, Z., Gutiérrez-Basulto, V., Schockaert, S.: Integrating ontologies and vector space embeddings using conceptual spaces. In: Bourgaux, C., Ozaki, A., Peñaloza, R. (eds.) International Research School in Artificial Intelligence in Bergen (AIB 2022), vol. 99. Open Access Series in Informatics (OASIcs). Dagstuhl, Germany, pp. 3:1–3:30 Schloss Dagstuhl – Leibniz-Zentrum für Informatik (2022). isbn: 978-3- 95977-228-0. https://doi.org/10.4230/OASIcs.AIB.2022.3. https://drops.dagstuhl.de/entities/document/10.4230/OASIcs.AIB.2022.3
5. Bouraoui, Z., et al.: Modelling semantic categories using conceptual neighborhood. In: Cited by: 8, pp. 7448–7455 (2020). https://www.scopus.com/inward/record.uri?eid=2-s2.0-85100751171&partnerID=40 &md5=b3889af3050ba94181fc4ff357a1fdb9