Distributional Memory: A General Framework for Corpus-Based Semantics

Author:

Baroni Marco1,Lenci Alessandro2

Affiliation:

1. University of Trento

2. University of Pisa

Abstract

Research into corpus-based semantics has focused on the development of ad hoc models that treat single tasks, or sets of closely related tasks, as unrelated challenges to be tackled by extracting different kinds of distributional information from the corpus. As an alternative to this “one task, one model” approach, the Distributional Memory framework extracts distributional information once and for all from the corpus, in the form of a set of weighted word-link-word tuples arranged into a third-order tensor. Different matrices are then generated from the tensor, and their rows and columns constitute natural spaces to deal with different semantic problems. In this way, the same distributional information can be shared across tasks such as modeling word similarity judgments, discovering synonyms, concept categorization, predicting selectional preferences of verbs, solving analogy problems, classifying relations between word pairs, harvesting qualia structures with patterns or example pairs, predicting the typical properties of concepts, and classifying verbs into alternation classes. Extensive empirical testing in all these domains shows that a Distributional Memory implementation performs competitively against task-specific algorithms recently reported in the literature for the same tasks, and against our implementations of several state-of-the-art methods. The Distributional Memory approach is thus shown to be tenable despite the constraints imposed by its multi-purpose nature.

Publisher

MIT Press - Journals

Subject

Artificial Intelligence,Computer Science Applications,Linguistics and Language,Language and Linguistics

Cited by 248 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3