Attention is currency: how surface features of Lewis structures influence organic chemistry student reasoning about stability

Author:

Rotich Fridah1ORCID,Ward Lyniesha2ORCID,Beck Carly1,Popova Maia1ORCID

Affiliation:

1. University of North Carolina at Greensboro, USA

2. Indiana University–Purdue University, Indianapolis, USA

Abstract

Despite representations’ central role in conveying chemical phenomena, mastering them is not trivial, given the wide variety of different conventions to interpret and use them. Furthermore, instructional approaches and materials may overlook explicit discussion on how students should reason with representations. To gather evidence that could guide improvements in teaching strategies and the creation of more effective instructional materials, we explored how students use Lewis structures to make inferences about stability. Through interviews with twenty-eight organic chemistry students, we have captured a range of resources that they employed, including the features of Lewis structures they paid attention to, the conceptual resources they activated, and the sophistication of their explanations. We found that students referenced all the explicit features of the provided Lewis structures but primarily attributed stability to the unique eye-catching features of each representation. Importantly, the surface features to which students attended impacted the conceptual resources they activated and their reasoning. Specifically, some students misapplied chemical principles to make justifications that fit their correct or incorrect claims about stability. Moreover, students primarily relied on lower-level reasoning and heuristics when constructing explanations. These findings underscore the importance of probing student reasoning so that instruction and assessments can be tailored to enhance students' ability to effectively use representations to reason about chemical phenomena. By understanding the reasoning patterns students adopt, educators can develop targeted strategies that promote deeper understanding and productive use of chemical representations.

Funder

Division of Undergraduate Education

Publisher

Royal Society of Chemistry (RSC)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3