Automated neuronal reconstruction with super-multicolour Tetbow labelling and threshold-based clustering of colour hues

Author:

Leiwe Marcus N.,Fujimoto SatoshiORCID,Baba Toshikazu,Moriyasu DaichiORCID,Saha BiswanathORCID,Sakaguchi RichiORCID,Inagaki Shigenori,Imai TakeshiORCID

Abstract

AbstractFluorescence imaging is widely used for the mesoscopic mapping of neuronal connectivity. However, neurite reconstruction is challenging, especially when neurons are densely labelled. Here, we report a strategy for the fully automated reconstruction of densely labelled neuronal circuits. Firstly, we establish stochastic super-multicolour labelling with up to seven different fluorescent proteins using the Tetbow method. With this method, each neuron is labelled with a unique combination of fluorescent proteins, which are then imaged and separated by linear unmixing. We also establish an automated neurite reconstruction pipeline based on the quantitative analysis of multiple dyes (QDyeFinder), which identifies neurite fragments with similar colour combinations. To classify colour combinations, we develop unsupervised clustering algorithm, dCrawler, in which data points in multi-dimensional space are clustered based on a given threshold distance. Our strategy allows the reconstruction of neurites for up to hundreds of neurons at the millimetre scale without using their physical continuity.

Funder

Japan Agency for Medical Research and Development

MEXT | Japan Science and Technology Agency

Japan Society for the Promotion of Science London

Uehara Memorial Foundation

Ichiro Kanahara Foundation: https://www.kanehara-zaidan.or.jp/index_eng.html

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3