Abstract
AbstractNeuromorphic computing, an alternative for von Neumann architecture, requires synapse devices where the data can be stored and computed in the same place. The three-terminal synapse device is attractive for neuromorphic computing due to its high stability and controllability. However, high nonlinearity on weight update, low dynamic range, and incompatibility with conventional CMOS systems have been reported as obstacles for large-scale crossbar arrays. Here, we propose the CMOS compatible gate injection-based field-effect transistor employing thermionic emission to enhance the linear conductance update. The dependence of the linearity on the conduction mechanism is examined by inserting an interfacial layer in the gate stack. To demonstrate the conduction mechanism, the gate current measurement is conducted under varying temperatures. The device based on thermionic emission achieves superior synaptic characteristics, leading to high performance on the artificial neural network simulation as 93.17% on the MNIST dataset.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry,Multidisciplinary
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献