Abstract
AbstractSudden steam-driven eruptions strike without warning and are a leading cause of fatalities at touristic volcanoes. Recent deaths following the 2019 Whakaari eruption in New Zealand expose a need for accurate, short-term forecasting. However, current volcano alert systems are heuristic and too slowly updated with human input. Here, we show that a structured machine learning approach can detect eruption precursors in real-time seismic data streamed from Whakaari. We identify four-hour energy bursts that occur hours to days before most eruptions and suggest these indicate charging of the vent hydrothermal system by hot magmatic fluids. We developed a model to issue short-term alerts of elevated eruption likelihood and show that, under cross-validation testing, it could provide advanced warning of an unseen eruption in four out of five instances, including at least four hours warning for the 2019 eruption. This makes a strong case to adopt real-time forecasting models at active volcanoes.
Publisher
Springer Science and Business Media LLC
Subject
General Physics and Astronomy,General Biochemistry, Genetics and Molecular Biology,General Chemistry
Cited by
76 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献