Eruption Forecasting Model for Copahue Volcano (Southern Andes) Using Seismic Data and Machine Learning: A Joint Interpretation with Geodetic Data (GNSS and InSAR)

Author:

Cabrera Leoncio1ORCID,Ardid Alberto2ORCID,Melchor Ivan3ORCID,Ruiz Sergio1ORCID,Symmes-Lopetegui Blanca1,Carlos Báez Juan4ORCID,Delgado Francisco5,Martinez-Yáñez Pablo6,Dempsey David2ORCID,Cronin Shane7ORCID

Affiliation:

1. 1Departamento de Geofísica, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

2. 2Department of Civil and Natural Resources Engineering, University of Canterbury, Christchurch, New Zealand

3. 3Instituto de Investigación en Paleobiología y Geología, CONICET–Universidad Nacional de Río Negro, Rio Negro, Argentina

4. 4Centro Sismológico Nacional, Universidad de Chile, Santiago, Chile

5. 5Departamento de Geología, Facultad de Ciencias Físicas y Matemáticas, Universidad de Chile, Santiago, Chile

6. 6Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile

7. 7School of Environment, University of Auckland, Auckland, New Zealand

Abstract

Abstract Anticipating volcanic eruptions remains a challenge despite significant scientific advancements, leading to substantial human and economic losses. Traditional approaches, like volcano alert levels, provide current volcanic states but do not always include eruption forecasts. Machine learning (ML) emerges as a promising tool for eruption forecasting, offering data-driven insights. We propose an ML pipeline using volcano-seismic data, integrating precursor extraction, classification modeling, and decision-making for eruption alerts. Testing on six Copahue volcano eruptions demonstrates our model’s ability to identify precursors and issue advanced warnings pseudoprospectively. Our model provides alerts 5–75 hr before eruptions and achieving a high true negative rate, indicating robust discriminatory power. Integrating short- and long-term data reveals seismic sensitivity, emphasizing the need for comprehensive volcanic monitoring. Our approach showcases ML’s potential to enhance eruption forecasting and risk mitigation. In addition, we analyze long-term geodetic data (Interferometric Synthetic Aperture Radar and Global Navigation Satellite System) to assess Copahue volcano deformation trends, in which we notice an absence of noteworthy deformation in the signals associated with the six small eruptions, aligning with their small magnitude.

Publisher

Seismological Society of America (SSA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3