Multitimescale Template Matching: Discovering Eruption Precursors across Diverse Volcanic Settings

Author:

Ardid Alberto1ORCID,Dempsey David1,Corry Josh1,Garrett Owen1ORCID,Lamb Oliver D.2ORCID,Cronin Shane3ORCID

Affiliation:

1. 1University of Canterbury, Christchurch, New Zealand

2. 2GNS Science|Te Pū Ao, Wairakei Research Centre, Taupo, New Zealand

3. 3University of Auckland, Auckland, New Zealand

Abstract

Abstract Volcanic eruptions pose significant risks, demanding precise monitoring for timely hazard mitigation. However, interpreting noisy seismic data for eruptive precursors remains challenging. This study introduces a novel methodology that extends an earlier time-series feature engineering approach to include template matching against prior eruptions. We aim to identify subtle signals within seismic data to enhance our understanding of volcanic activity and future hazards. To do this, we analyze the continuous seismic record at a volcano and identify the time-series elements that regularly precede eruptions and the timescales over which these are observable. We conduct tests across various time lengths, ranging from 1 to 60 days. For Copahue (Chile/Argentina), Pavlof (Alaska), Bezymianny (Russia), and Whakaari (New Zealand) volcanoes, we confirm statistically significant eruption precursors. In particular, a feature named change quantiles (0.2–0.8), which is related to the conditional dynamics of surface acceleration at the volcano, emerges as a key indicator of future eruptions over 14-day timescales. This research offers new methods for real-time seismovolcanic monitoring, minimizing the effects of unknown, spurious noise, and discerning recurrent patterns through template matching. By providing deeper insights into pre-eruptive behavior, it may lead to more effective hazard reduction strategies, enhancing public safety around active volcanoes.

Publisher

Seismological Society of America (SSA)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3