Universal machine learning approach to volcanic eruption forecasting using seismic features

Author:

Rey-Devesa Pablo,Carthy Joe,Titos Manuel,Prudencio Janire,Ibáñez Jesús M.,Benítez Carmen

Abstract

Introduction: Volcano seismology has successfully predicted several eruptions and includes many reliable methods that have been adopted extensively by volcanic observatories; however, there are several problems that still lack solutions. Meanwhile, the overwhelming success of data-driven models to solve predictive complex real-world problems positions them as an effective addition to the monitoring systems deployed in volcanological observatories.Methods: By applying signal processing techniques on seismic records, we extracted four different seismic features, which usually change their trend when the system is approaching an eruptive episode. We built a temporal matrix with these parameters then defined a label for each temporal moment according to the real state of the volcanic activity (Unrest, Pre-Eruptive, Eruptive). To solve the remaining problem developing early warning systems that are transferable between volcanoes, we applied our methodology to databases associated with different volcanic systems, including data from both explosive and effusive episodes, recorded at several volcanic scenarios with open and closed conduits: Mt. Etna, Bezymianny, Volcán de Colima, Mount St. Helens and Augustine.Results and Discussion: This work proposes the use of Neural Networks to classify the volcanic state of alert based on the behaviour of these features, providing a probability of having an eruption. This approach offers a Machine Learning tool for probabilistic short-term volcanic eruption forecasting, transferable to different volcanic systems. This innovative method classifies the state of volcanic hazard in near real-time and estimates a probability of the occurrence of an eruption, resulting in a period from at least hours to several days to forecast an eruption.

Publisher

Frontiers Media SA

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3