Prediction of the shear capacity of ultrahigh-performance concrete beams using neural network and genetic algorithm

Author:

Hou Rui,Hou Qi

Abstract

AbstractCurrently, concrete structures have increasingly higher requirements for the shear capacity of beams, and ultrahigh-performance concrete (UHPC) beams are increasingly widely used. To facilitate the design of UHPC beams, this paper constructs a UHPC beam shear strength prediction model. First, static shear tests were conducted on 6 UHPC beam specimens with a length of 2 m and a cross-sectional size of 200 mm × 300 mm to explore the effects of the UHPC strength, shear span ratio, hoop ratio, and steel fiber content on the shear resistance and failure morphology of the UHPC beams. Based on the results of this study and a static load experiment of 102 UHPC beams in the literature, the construction includes the shear span ratio (λ), beam section width (b), beam section height (h), hoop ratio (ρSV), UHPC compressive strength (fc), steel fiber volume fraction (Vf), and the UHPC beam shear capacity (Vex) 7 parameter database. Based on the construction of the database, 1200 BPNN models were trained through trial and error. The models were evaluated using the correlation coefficient R, root mean square error RMSE, and a20-index indicators, and the optimal BPNN model (6-15-8-1) was determined based on the ranking of RMSE. After the optimal BPNN is optimized by a genetic algorithm, the prediction performance of the model is improved. The correlation coefficient between the predicted value and the experimental value is R2 = 0.98667, and RMSE = 7.38. This model can reliably predict the shear strength of UHPC beams and provide designers with a reference for the design of UHPC beams. Finally, after sensitivity analysis, the influence of each input parameter on the UHPC shear capacity is determined.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3