Strength Iso-Responses of Shear-Deficient Ultra-High Performance Fiber Reinforced Concrete Beams

Author:

Abbas Yassir M.1ORCID,Shafiq Nasir2ORCID,Fares Galal1ORCID,Osman Montasir2,Khan Mohammad Iqbal1ORCID,Khatib Jamal M.3ORCID

Affiliation:

1. Department of Civil Engineering, King Saud University, Riyadh 11421, Saudi Arabia

2. Department of Civil and Environmental Engineering, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Malaysia

3. Faculty of Science and Engineering, University of Wolverhampton, Wolverhampton WV1 1LY, UK

Abstract

The development of sustainable construction methods can be achieved by improving the performance of reinforced concrete elements, resulting in an increase in structural life expectancy. This paper presents a study of the structural performance of shear-deficient ultrahigh-performance concrete (UHPC) concrete beams to produce sustainable construction materials. In the first phase of the experimental campaign, performance-based optimizations were implemented for UHPC. The characteristic compressive strength of all mixes was kept at 130 ± 10 MPa. The elastic modulus of plain UHPC was obtained at 8 GPa, and for the fiber-reinforced one was 40 GPa. Additionally, 18 sets of reinforced UHPC beams were investigated for their structural behavior based on the overall depth, reinforcement ratio (ρ), and the shear-span-to-depth ratio (λ) as key variables. Here, λ was varied between 1 and 2 and ρ was varied between 0.56% and 3.15%. The experimental study determined the lowest shear strength as 4.56 MPa, and the highest shear strength was calculated as 11.34 MPa. The database of the current shear strength results and similar literature results were used to develop models for predicting shear capacity. This research focused on applying a statistical approach using neuro-fuzzy logic, the robust analytical model. The ratio of the experimentally calculated shear strength and the predicted shear strength for different values of λ and ρ was obtained between 0.75 and 1.25, which was in good agreement with the results of similar literature. The results of this study suggest that high-strength fiber may extend structural lifetimes in UHPC applications.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development,Building and Construction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3