A novel framework for the evaluation of coastal protection schemes through integration of numerical modelling and artificial intelligence into the Sand Engine App

Author:

Kumar Pavitra,Leonardi Nicoletta

Abstract

AbstractThere is growing interest in the adoption of Engineering with Nature or Nature Based Solutions for coastal protection including large mega-nourishment interventions. However, there are still many unknowns on the variables and design features influencing their functionalities. There are also challenges in the optimization of coastal modelling outputs or information usage in support of decision-making. In this study, more than five hundred numerical simulations with different sandengine designs and different locations along Morecambe Bay (UK) were conducted in Delft3D. Twelve Artificial Neural Networking ensemble models structures were trained on the simulated data to predict the influence of different sand engines on water depth, wave height and sediment transports with good performance. The ensemble models were then packed into a Sand Engine App developed in MATLAB and designed to calculate the impact of different sand engine features on the above variables based on users’ inputs of sandengine designs.

Funder

UK Research and Innovation

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3