Affiliation:
1. Department of Geography and Planning School of Environmental Sciences University of Liverpool Liverpool UK
Abstract
AbstractCoastal protection is of paramount importance because erosion and flooding affect millions of people living along the coast and can largely influence countries' economy. The implementation of nature‐based solutions for coastal protection, such as sand engines, has become more popular due to these interventions' adaptability to climate change. This study explores synergies between Artificial Intelligence (AI) and hydro‐morphodynamic models for the creation of efficient decision‐making tools for the choice of optimal sand engines configurations. Specifically, we investigate the use of long‐short‐term memory (LSTM) models as predictive tools for the morphological evolution of sand engines. We developed different LSTM models to predict time series of bathymetric changes across the sand engine as well as the time‐decline in the sand engine volume as a function of external forces and intervention size. Finally, a MATLAB framework was developed to return LSTM model results based on users' inputs about sand engine size and external forcings.
Funder
Engineering and Physical Sciences Research Council
Publisher
American Geophysical Union (AGU)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献