Author:
van Vliet Stephan,Bain James R.,Muehlbauer Michael J.,Provenza Frederick D.,Kronberg Scott L.,Pieper Carl F.,Huffman Kim M.
Abstract
AbstractA new generation of plant-based meat alternatives—formulated to mimic the taste and nutritional composition of red meat—have attracted considerable consumer interest, research attention, and media coverage. This has raised questions of whether plant-based meat alternatives represent proper nutritional replacements to animal meat. The goal of our study was to use untargeted metabolomics to provide an in-depth comparison of the metabolite profiles a popular plant-based meat alternative (n = 18) and grass-fed ground beef (n = 18) matched for serving size (113 g) and fat content (14 g). Despite apparent similarities based on Nutrition Facts panels, our metabolomics analysis found that metabolite abundances between the plant-based meat alternative and grass-fed ground beef differed by 90% (171 out of 190 profiled metabolites; false discovery rate adjusted p < 0.05). Several metabolites were found either exclusively (22 metabolites) or in greater quantities in beef (51 metabolites) (all, p < 0.05). Nutrients such as docosahexaenoic acid (ω-3), niacinamide (vitamin B3), glucosamine, hydroxyproline and the anti-oxidants allantoin, anserine, cysteamine, spermine, and squalene were amongst those only found in beef. Several other metabolites were found exclusively (31 metabolites) or in greater quantities (67 metabolites) in the plant-based meat alternative (all, p < 0.05). Ascorbate (vitamin C), phytosterols, and several phenolic anti-oxidants such as loganin, sulfurol, syringic acid, tyrosol, and vanillic acid were amongst those only found in the plant-based meat alternative. Large differences in metabolites within various nutrient classes (e.g., amino acids, dipeptides, vitamins, phenols, tocopherols, and fatty acids) with physiological, anti-inflammatory, and/or immunomodulatory roles indicate that these products should not be viewed as truly nutritionally interchangeable, but could be viewed as complementary in terms of provided nutrients. The new information we provide is important for making informed decisions by consumers and health professionals. It cannot be determined from our data if either source is healthier to consume.
Publisher
Springer Science and Business Media LLC
Reference90 articles.
1. Godfray, H. C. J. et al. Meat consumption, health, and the environment. Science 361, eaam5324. https://doi.org/10.1126/science.aam5324 (2018).
2. Hu, F. B., Otis, B. O. & McCarthy, G. Can plant-based meat alternatives be part of a healthy and sustainable diet?. JAMA 322, 1547–1548. https://doi.org/10.1001/jama.2019.13187 (2019).
3. Godfray, H. C. J. Meat: The future series—Alternative proteins. World Economic Forum, Geneva, Switzerland, http://www3.weforum.org/docs/WEF_White_Paper_Alternative_Proteins.pdf. Accessed 24 July 2020 (2019).
4. Curtain, F. & Grafenauer, S. Plant-based meat substitutes in the flexitarian age: An audit of products on supermarket shelves. Nutrients. https://doi.org/10.3390/nu11112603 (2019).
5. Van Vliet, S., Kronberg, S. L. & Provenza, F. D. Plant-based meats, human health, and climate change. Front. Sust. Food. Syst. https://doi.org/10.3389/fsufs.2020.00128 (2020).