Multilayer redox-based HfOx/Al2O3/TiO2 memristive structures for neuromorphic computing

Author:

Park Seongae,Spetzler Benjamin,Ivanov Tzvetan,Ziegler Martin

Abstract

AbstractRedox-based memristive devices have shown great potential for application in neuromorphic computing systems. However, the demands on the device characteristics depend on the implemented computational scheme and unifying the desired properties in one stable device is still challenging. Understanding how and to what extend the device characteristics can be tuned and stabilized is crucial for developing application specific designs. Here, we present memristive devices with a functional trilayer of HfOx/Al2O3/TiO2 tailored by the stoichiometry of HfOx (x = 1.8, 2) and the operating conditions. The device properties are experimentally analyzed, and a physics-based device model is developed to provide a microscopic interpretation and explain the role of the Al2O3 layer for a stable performance. Our results demonstrate that the resistive switching mechanism can be tuned from area type to filament type in the same device, which is well explained by the model: the Al2O3 layer stabilizes the area-type switching mechanism by controlling the formation of oxygen vacancies at the Al2O3/HfOx interface with an estimated formation energy of ≈ 1.65 ± 0.05 eV. Such stabilized area-type devices combine multi-level analog switching, linear resistance change, and long retention times (≈ 107–108 s) without external current compliance and initial electroforming cycles. This combination is a significant improvement compared to previous bilayer devices and makes the devices potentially interesting for future integration into memristive circuits for neuromorphic applications.

Funder

Carl-Zeiss-Stiftung

Technische Universität Ilmenau

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3