Emulating synaptic response in n- and p-channel MoS2 transistors by utilizing charge trapping dynamics

Author:

Bhattacharjee Shubhadeep,Wigchering Rient,Manning Hugh G.,Boland John. J.,Hurley Paul K.

Abstract

AbstractBrain-inspired, neuromorphic computing aims to address the growing computational complexity and power consumption in modern von-Neumann architectures. Progress in this area has been hindered due to the lack of hardware elements that can mimic neuronal/synaptic behavior which form the fundamental building blocks for spiking neural networks (SNNs). In this work, we leverage the short/long term memory effects due to the electron trapping events in an atomically thin channel transistor that mimic the exchange of neurotransmitters and emulate a synaptic response. Re-doped (n-type) and Nb-doped (p-type) molybdenum di-sulfide (MoS2) field-effect transistors are examined using pulsed-gate measurements, which identify the time scales of electron trapping/de-trapping. The devices demonstrate promising trends for short/long term plasticity in the order of ms/minutes, respectively. Interestingly, pulse paired facilitation (PPF), which quantifies the short-term plasticity, reveal time constants (τ1 = 27.4 ms, τ2 = 725 ms) that closely match those from a biological synapse. Potentiation and depression measurements describe the ability of the synaptic device to traverse several analog states, where at least 50 conductance values are accessed using consecutive pulses of equal height and width. Finally, we demonstrate devices, which can emulate a well-known learning rule, spike time-dependent plasticity (STDP) which codifies the temporal sequence of pre- and post-synaptic neuronal firing into corresponding synaptic weights. These synaptic devices present significant advantages over iontronic counterparts and are envisioned to create new directions in the development of hardware for neuromorphic computing.

Funder

Science Foundation Ireland

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3