Author:
Lee Tae-Ju,Kim Su-Kyung,Seong Tae-Yeon
Abstract
AbstractThe development of brain-inspired neuromorphic computing, including artificial intelligence (AI) and machine learning, is of considerable importance because of the rapid growth in hardware and software capacities, which allows for the efficient handling of big data. Devices for neuromorphic computing must satisfy basic requirements such as multilevel states, high operating speeds, low energy consumption, and sufficient endurance, retention and linearity. In this study, inorganic perovskite-type amorphous strontium vanadate (a-SrVOx: a-SVO) synthesized at room temperature is utilized to produce a high-performance memristor that demonstrates nonvolatile multilevel resistive switching and synaptic characteristics. Analysis of the electrical characteristics indicates that the a-SVO memristor illustrates typical bipolar resistive switching behavior. Multilevel resistance states are also observed in the off-to-on and on-to-off transition processes. The retention resistance of the a-SVO memristor is shown to not significantly change for a period of 2 × 104 s. The conduction mechanism operating within the Ag/a-SVO/Pt memristor is ascribed to the formation of Ag-based filaments. Nonlinear neural network simulations are also conducted to evaluate the synaptic behavior. These results demonstrate that a-SVO-based memristors hold great promise for use in high-performance neuromorphic computing devices.
Publisher
Springer Science and Business Media LLC
Cited by
23 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献