Analysis on charge-retention characteristics of sub-threshold synaptic IGZO thin-film transistors with defective gate oxides

Author:

Lee Sungsik

Abstract

AbstractWe provide a quantitative analysis on the charge-retention characteristics of sub-threshold operating In–Ga–Zn–O (IGZO) thin-film transistors (TFTs) with a defective gate-oxide for low-power synaptic applications. Here, a defective SiO2 is incorporated as the synaptic gate-oxide in the fabricated IGZO TFTs, where a defect is physically playing the role as an electron trap. With this synaptic TFT, positive programming pulses for the electron trapping are applied to the gate electrode, followed by monitoring the retention characteristics as a function of time. And this set of the programming and retention-monitoring experiments is repeated in several times for accumulating effects of pre-synaptic stimulations. Due to these accumulated stimulations, electrons are expected to be getting occupied within a deeper trap-state with a higher activation energy, which can lead to a longer retention. To verify these phenomena, a stretched exponential function and respective inverse Laplace transform are employed to precisely estimate a retention time and trap activation-energy for transient experimental results.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3