Effect of oxygen vacancy and Si doping on the electrical properties of Ta2O5 in memristor characteristics

Author:

Islam Md. SherajulORCID,Lee Jonghoon,Ganguli Sabyasachi,Roy Ajit K.

Abstract

AbstractThe resistive switching behavior in Ta2O5 based memristors is largely controlled by the formation and annihilation of conductive filaments (CFs) that are generated by the migration of oxygen vacancies (OVs). To gain a fundamental insight on the switching characteristics, we have systematically investigated the electrical transport properties of two different Ta2O5 polymorphs ($$\epsilon$$ ϵ -Ta2O5 and λ-Ta2O5), using density functional theory calculations, and associated vacancy induced electrical conductivity using Boltzmann transport theory. The projected band structure and DOS in a few types of OVs, (two-fold (O2fV), three-fold (O3fV), interlayer (OILV), and distorted octahedral coordinated vacancies (OεV)) reveal that the presence of OILV would cause Ta2O5 to transition from a semiconductor to a metal, leading to improved electrical conductivity, whereas the other OV types only create localized mid-gap defect states within the bandgap. On studying the combined effect of OVs and Si-doping, a reduction of the formation energy and creation of defect states near the conduction band edge, is observed in Si-doped Ta2O5, and lower energy is found for the OVs near Si atoms, which would be advantageous to the uniformity of CFs produced by OVs. These findings can serve as guidance for further experimental work aimed at enhancing the uniformity and switching properties of resistance switching for Ta2O5-based memristors.

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3