Non-parametric quantile regression-based modelling of additive effects to solar irradiation in Southern Africa

Author:

Masache Amon,Maposa Daniel,Mdlongwa Precious,Sigauke Caston

Abstract

AbstractModelling of solar irradiation is paramount to renewable energy management. This warrants the inclusion of additive effects to predict solar irradiation. Modelling of additive effects to solar irradiation can improve the forecasting accuracy of prediction frameworks. To help develop the frameworks, this current study modelled the additive effects using non-parametric quantile regression (QR). The approach applies quantile splines to approximate non-parametric components when finding the best relationships between covariates and the response variable. However, some additive effects are perceived as linear. Thus, the study included the partial linearly additive quantile regression model (PLAQR) in the quest to find how best the additive effects can be modelled. As a result, a comparative investigation on the forecasting performances of the PLAQR, an additive quantile regression (AQR) model and the new quantile generalised additive model (QGAM) using out-of-sample and probabilistic forecasting metric evaluations was done. Forecasted density plots, Murphy diagrams and results from the Diebold–Mariano (DM) hypothesis test were also analysed. The density plot, the curves on the Murphy diagram and most metric scores computed for the QGAM were slightly better than for the PLAQR and AQR models. That is, even though the DM test indicates that the PLAQR and AQR models are less accurate than the QGAM, we could not conclude an outright greater forecasting performance of the QGAM than the PLAQR or AQR models. However, in situations of probabilistic forecasting metric preferences, each model can be prioritised to be applied to the metric where it performed slightly the best. The three models performed differently in different locations, but the location was not a significant factor in their performances. In contrast, forecasting horizon and sample size influenced model performance differently in the three additive models. The performance variations also depended on the metric being evaluated. Therefore, the study has established the best forecasting horizons and sample sizes for the different metrics. It was finally concluded that a 20% forecasting horizon and a minimum sample size of 10000 data points are ideal when modelling additive effects of solar irradiation using non-parametric QR.

Publisher

Springer Science and Business Media LLC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3