Intelligent techniques, harmonically coupled and SARIMA models in forecasting solar radiation data: A hybridization approach

Author:

Sivhugwana K.S.,Ranganai E.

Abstract

The unsteady and intermittent feature (mainly due to atmospheric mechanisms and diurnal cycles) of solar energy resource is often a stumbling block, due to its unpredictable nature, to receiving high-intensity levels of solar radiation at ground level. Hence, there has been a growing demand for accurate solar irradiance forecasts that properly explain the mixture of deterministic and stochastic characteristic (which may be linear or nonlinear) in which solar radiation presents itself on the earth’s surface. The seasonal autoregressive integrated moving average (SARIMA) models are popular for accurately modelling linearity, whilst the neural networks effectively capture the aspect of nonlinearity embedded in solar radiation data at ground level. This comparative study couples sinusoidal predictors at specified harmonic frequencies with SARIMA models, neural network autoregression (NNAR) models and the hybrid (SARIMA-NNAR) models to form the respective harmonically coupled models, namely, HCSARIMA models, HCNNAR models and HCSARIMA-NNAR models, with the sinusoidal predictor function, SARIMA, and NNAR parts capturing the deterministic, linear and nonlinear components, respectively. These models are used to forecast 10-minutely and 60-minutely averaged global horizontal irradiance data series obtained from the RVD Richtersveld solar radiometric station in the Northern Cape, South Africa. The forecasting accuracy of the three above-mentioned models is undertaken based on the relative mean square error, mean absolute error and mean absolute percentage error. The HCNNAR model and HCSARIMA-NNAR model gave more accurate forecasting results for 60-minutely and 10-minutely data, respectively. Highlights HCSARIMA models were outperformed by both HCNNAR models and HCSARIMA-NNAR models in the forecasting arena. HCNNAR models were most appropriate for forecasting larger time scales (i.e. 60-minutely). HCSARIMA-NNAR models were most appropriate for forecasting smaller time scales (i.e. 10-minutely). Models fitted on the January data series performed better than those fitted on the June data series.

Publisher

Academy of Science of South Africa

Subject

General Energy,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3