Spatio-Temporal Forecasting of Global Horizontal Irradiance Using Bayesian Inference

Author:

Sigauke CastonORCID,Chandiwana EdinaORCID,Bere AlphonceORCID

Abstract

Accurate global horizontal irradiance (GHI) forecasting promotes power grid stability. Most of the research on solar irradiance forecasting has been based on a single-site analysis. It is crucial to explore multisite modeling to capture variations in weather conditions between various sites, thereby producing a more robust model. In this research, we propose the use of spatial regression coupled with Gaussian Process Regression (GP Spatial) and the GP Autoregressive Spatial model (GP-AR Spatial) for the prediction of GHI using data from seven radiometric stations from South Africa and one from Namibia. The results of the proposed methods were compared with a benchmark model, the Linear Spatial Temporal Regression (LSTR) model. Five validation sets each comprised of three stations were chosen. For each validation set, the remaining five stations were used for training. Based on root mean square error, the GP model gave the most accurate forecasts across the validation sets. These results were confirmed by the statistical significance tests using the Giacommini–White test. In terms of coverage probability, there was a 100% coverage on three validation sets and the other two had 97% and 99%. The GP model dominated the other two models. One of the study’s contributions is using standardized forecasts and including a nonlinear trend covariate, which improved the accuracy of the forecasts. The forecasts were combined using a monotone composite quantile regression neural network and a quantile generalized additive model. This modeling framework could be useful to power utility companies in making informed decisions when planning power grid management, including large-scale solar power integration onto the power grid.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3