Twenty-Four-Hour Ahead Probabilistic Global Horizontal Irradiance Forecasting Using Gaussian Process Regression

Author:

Chandiwana EdinaORCID,Sigauke CastonORCID,Bere AlphonceORCID

Abstract

Probabilistic solar power forecasting has been critical in Southern Africa because of major shortages of power due to climatic changes and other factors over the past decade. This paper discusses Gaussian process regression (GPR) coupled with core vector regression for short-term hourly global horizontal irradiance (GHI) forecasting. GPR is a powerful Bayesian non-parametric regression method that works well for small data sets and quantifies the uncertainty in the predictions. The choice of a kernel that characterises the covariance function is a crucial issue in Gaussian process regression. In this study, we adopt the minimum enclosing ball (MEB) technique. The MEB improves the forecasting power of GPR because the smaller the ball is, the shorter the training time, hence performance is robust. Forecasting of real-time data was done on two South African radiometric stations, Stellenbosch University (SUN) in a coastal area of the Western Cape Province, and the University of Venda (UNV) station in the Limpopo Province. Variables were selected using the least absolute shrinkage and selection operator via hierarchical interactions. The Bayesian approach using informative priors was used for parameter estimation. Based on the root mean square error, mean absolute error and percentage bias the results showed that the GPR model gives the most accurate predictions compared to those from gradient boosting and support vector regression models, making this study a useful tool for decision-makers and system operators in power utility companies. The main contribution of this paper is in the use of a GPR model coupled with the core vector methodology which is used in forecasting GHI using South African data. This is the first application of GPR coupled with core vector regression in which the minimum enclosing ball is applied on GHI data, to the best of our knowledge.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3