Predicting clear-sky global horizontal irradiance at eight locations in South Africa using four models

Author:

Zhandire Evans

Abstract

Solar radiation under clear-sky conditions provides information about the maximum possible magnitude of the solar resource available at a location of interest. This information is useful for determining the limits of solar energy use in applications such as thermal and electrical energy generation. Measurements of solar irradiance to provide this information are limited by the associated cost. It is therefore of great interest and importance to develop models that generate these data in lieu of measurements. This study focused on four such models: Ineichen-Perez (I-P), European Solar Radiation Atlas model (ESRA), multilayer perceptron neural network (MLPNN) and radial basis function neural network (RBFNN) models. These models were calibrated and tested using solar irradiance data measured at eight different locations in South Africa. The I-P model showed the best performance, recording relative root mean square errors of less than 2% across all hours, months and locations. The performances of the MLPNN and RBFNN were poor when averaged over all stations, but tended to show performance similar to that of the I-P model for some of the stations. The ESRA model showed performance that was in between that of the Artificial Neural Networks and that of the I-P model.

Publisher

Academy of Science of South Africa

Subject

General Energy,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3