Autonomous localized path planning algorithm for UAVs based on TD3 strategy

Author:

Feiyu Zhao,Dayan Li,Zhengxu Wang,Jianlin Mao,Niya Wang

Abstract

AbstractUnmanned Aerial Vehicles are useful tools for many applications. However, autonomous path planning for Unmanned Aerial Vehicles in unfamiliar environments is a challenging problem when facing a series of problems such as poor consistency, high influence by the native controller of the Unmanned Aerial Vehicles. In this paper, we investigate reinforcement learning-based autonomous local path planning methods for Unmanned Aerial Vehicles with high autonomous decision-making capability and locally high portability. We propose an autonomous local path planning algorithm based on the TD3 strategy to solve the problem of local obstacle avoidance and path planning in unfamiliar environments using autonomous decision-making of Unmanned Aerial Vehicles. The simulation results on Gazebo show that our method can effectively realize the autonomous local path planning task for Unmanned Aerial Vehicles, the success rate of path planning with our method can reach 93% under the interference of no obstacles, and 92% in the environment with obstacles. Finally, our method can be used for autonomous path planning of Unmanned Aerial Vehicles in unfamiliar environments.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3