UAV Intelligent Coverage Navigation Based on DRL in Complex Geometrical Environments

Author:

Liu Shuai,Bai YuebinORCID

Abstract

AbstractUnmanned aerial vehicle (UAV) is one of the preferred tools for coverage detection missions, because of its maneuverability and flexibility. It is challenging for the UAV to decide a track by itself in a complex geometrical environment. This paper presents a UAV intelligent navigation method based on deep reinforcement learning (DRL). We propose using geographic information systems (GIS) as the DRL training environment to overcome the inconsistency between the training environment and the test environment. We creatively save the flight path in the form of an image. The combination of the knowledge-based Monte Carlo tree search method and local search method can not only effectively avoid falling into local search, but also ensure learning the optimal search direction under the limitation of computing power. Experiments show that the trained UAV can find an excellent flight path by intelligent navigation, and able to make effective flight decisions in a complex geometrical environment.

Funder

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

Springer Science and Business Media LLC

Subject

Computational Mathematics,General Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3