Abstract
AbstractUnmanned aerial vehicle (UAV) is one of the preferred tools for coverage detection missions, because of its maneuverability and flexibility. It is challenging for the UAV to decide a track by itself in a complex geometrical environment. This paper presents a UAV intelligent navigation method based on deep reinforcement learning (DRL). We propose using geographic information systems (GIS) as the DRL training environment to overcome the inconsistency between the training environment and the test environment. We creatively save the flight path in the form of an image. The combination of the knowledge-based Monte Carlo tree search method and local search method can not only effectively avoid falling into local search, but also ensure learning the optimal search direction under the limitation of computing power. Experiments show that the trained UAV can find an excellent flight path by intelligent navigation, and able to make effective flight decisions in a complex geometrical environment.
Funder
National Natural Science Foundation of China
National Key Research and Development Program of China
Publisher
Springer Science and Business Media LLC
Subject
Computational Mathematics,General Computer Science
Cited by
9 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献