Towards fully automated inner ear analysis with deep-learning-based joint segmentation and landmark detection framework

Author:

Stebani Jannik,Blaimer Martin,Zabler Simon,Neun Tilmann,Pelt Daniël M.,Rak Kristen

Abstract

AbstractAutomated analysis of the inner ear anatomy in radiological data instead of time-consuming manual assessment is a worthwhile goal that could facilitate preoperative planning and clinical research. We propose a framework encompassing joint semantic segmentation of the inner ear and anatomical landmark detection of helicotrema, oval and round window. A fully automated pipeline with a single, dual-headed volumetric 3D U-Net was implemented, trained and evaluated using manually labeled in-house datasets from cadaveric specimen ($$N=43$$ N = 43 ) and clinical practice ($$N=9$$ N = 9 ). The model robustness was further evaluated on three independent open-source datasets ($$N = 23{} + 7{} + 17$$ N = 23 + 7 + 17 scans) consisting of cadaveric specimen scans. For the in-house datasets, Dice scores of $$\text{0.97 and 0.94}$$ 0.97 and 0.94 , intersection-over-union scores of $$\text{0.94 and 0.89}$$ 0.94 and 0.89 and average Hausdorff distances of $$0.065{}$$ 0.065 and $$0.14{}$$ 0.14 voxel units were achieved. The landmark localization task was performed automatically with an average localization error of $$\text{3.3 and 5.2}$$ 3.3 and 5.2 voxel units. A robust, albeit reduced performance could be attained for the catalogue of three open-source datasets. Results of the ablation studies with 43 mono-parametric variations of the basal architecture and training protocol provided task-optimal parameters for both categories. Ablation studies against single-task variants of the basal architecture showed a clear performance benefit of coupling landmark localization with segmentation and a dataset-dependent performance impact on segmentation ability.

Funder

Bayerisches Staatsministerium für Wirtschaft, Infrastruktur, Verkehr und Technologie

Interdisziplinäres Zentrum für Klinische Forschung der Universität Würzburg

The Netherlands Organization for Scientific Research

Universitätsklinikum Würzburg

Publisher

Springer Science and Business Media LLC

Subject

Multidisciplinary

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3