Influence of learned landmark correspondences on lung CT registration

Author:

Bhat Ishaan1,Kuijf Hugo J.1,Viergever Max A.1,Pluim Josien P. W.12

Affiliation:

1. Image Sciences Institute University Medical Center Utrecht Utrecht The Netherlands

2. Department of Biomedical Engineering Eindhoven University of Technology Eindhoven The Netherlands

Abstract

AbstractBackgroundDisease or injury may cause a change in the biomechanical properties of the lungs, which can alter lung function. Image registration can be used to measure lung ventilation and quantify volume change, which can be a useful diagnostic aid. However, lung registration is a challenging problem because of the variation in deformation along the lungs, sliding motion of the lungs along the ribs, and change in density.PurposeLandmark correspondences have been used to make deformable image registration robust to large displacements.MethodsTo tackle the challenging task of intra‐patient lung computed tomography (CT) registration, we extend the landmark correspondence prediction model deep convolutional neural network‐Match by introducing a soft mask loss term to encourage landmark correspondences in specific regions and avoid the use of a mask during inference. To produce realistic deformations to train the landmark correspondence model, we use data‐driven synthetic transformations. We study the influence of these learned landmark correspondences on lung CT registration by integrating them into intensity‐based registration as a distance‐based penalty.ResultsOur results on the public thoracic CT dataset COPDgene show that using learned landmark correspondences as a soft constraint can reduce median registration error from approximately 5.46 to 4.08 mm compared to standard intensity‐based registration, in the absence of lung masks.ConclusionsWe show that using landmark correspondences results in minor improvements in local alignment, while significantly improving global alignment.

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3