Abstract
AbstractMicro/nanoprocessing of graphene surfaces has attracted significant interest for both science and applications due to its effective modulation of material properties, which, however, is usually restricted by the disadvantages of the current fabrication methods. Here, by exploiting cylindrical focusing of a femtosecond laser on graphene oxide (GO) films, we successfully produce uniform subwavelength grating structures at high speed along with a simultaneous in situ photoreduction process. Strikingly, the well-defined structures feature orientations parallel to the laser polarization and significant robustness against distinct perturbations. The proposed model and simulations reveal that the structure formation is based on the transverse electric (TE) surface plasmons triggered by the gradient reduction of the GO film from its surface to the interior, which eventually results in interference intensity fringes and spatially periodic interactions. Further experiments prove that such a regular structured surface can cause enhanced optical absorption (>20%) and an anisotropic photoresponse (~0.46 ratio) for the reduced GO film. Our work not only provides new insights into understanding the laser-GO interaction but also lays a solid foundation for practical usage of femtosecond laser plasmonic lithography, with the prospect of expansion to other two-dimensional materials for novel device applications.
Publisher
Springer Science and Business Media LLC
Subject
Atomic and Molecular Physics, and Optics,Electronic, Optical and Magnetic Materials
Reference51 articles.
1. Georgakilas, V. et al. Noncovalent functionalization of graphene and graphene oxide for energy materials, biosensing, catalytic, and biomedical applications. Chem. Rev. 116, 5464–5519 (2016).
2. Compton, O. C. & Nguyen, S. T. Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6, 711–723 (2010).
3. Patchkovskii, S. et al. Graphene nanostructures as tunable storage media for molecular hydrogen. Proc. Natl Acad. Sci. USA 102, 10439–10444 (2005).
4. Han, N. et al. Improved heat dissipation in gallium nitride light-emitting diodes with embedded graphene oxide pattern. Nat. Commun. 4, 1452 (2013).
5. Lin, H. et al. A 90-nm-thick graphene metamaterial for strong and extremely broadband absorption of unpolarized light. Nat. Photonics 13, 270–276 (2019).
Cited by
138 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献