Abstract
AbstractWe describe nNPipe for the automated analysis of morphologically diverse catalyst materials. Automated imaging routines and direct-electron detectors have enabled the collection of large data stacks over a wide range of sample positions at high temporal resolution. Simultaneously, traditional image analysis approaches are slow and hence unsuitable for large data stacks and consequently, researchers have progressively turned towards machine learning and deep learning approaches. Previous studies often detail work on morphologically uniform material systems with clearly discernible features, limited workable image sizes and training data that may be biased due to manual labelling. The nNPipe data-processing method consists of two standalone convolutional neural networks that were exclusively trained on multislice image simulations and enables fast analysis of 2048 × 2048 pixel images. Inference performance compared between idealised and real industrial catalytic samples and insights derived from subsequent data analysis are placed into the context of an automated imaging scenario.
Publisher
Springer Science and Business Media LLC
Subject
Computer Science Applications,Mechanics of Materials,General Materials Science,Modeling and Simulation
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献