A large language model-powered literature review for high-angle annular dark field imaging

Author:

Yuan 袁 Wenhao 文浩,Peng 彭 Cheng 程,He 何 Qian 迁

Abstract

Abstract High-angle annular dark field (HAADF) imaging in scanning transmission electron microscopy (STEM) has become an indispensable tool in materials science due to its ability to offer sub-Å resolution and provide chemical information through Z-contrast. This study leverages large language models (LLMs) to conduct a comprehensive bibliometric analysis of a large amount of HAADF-related literature (more than 41000 papers). By using LLMs, specifically ChatGPT, we were able to extract detailed information on applications, sample preparation methods, instruments used, and study conclusions. The findings highlight the capability of LLMs to provide a new perspective into HAADF imaging, underscoring its increasingly important role in materials science. Moreover, the rich information extracted from these publications can be harnessed to develop AI models that enhance the automation and intelligence of electron microscopes.

Publisher

IOP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3