Quantifying the thickness of WTe2 using atomic-resolution STEM simulations and supervised machine learning

Author:

Dihingia Nikalabh1ORCID,Vázquez-Lizardi Gabriel A.1ORCID,Wu Ryan J.2ORCID,Reifsnyder Hickey Danielle123ORCID

Affiliation:

1. Department of Chemistry, The Pennsylvania State University 1 , University Park, Pennsylvania 16802, USA

2. Department of Materials Science and Engineering, The Pennsylvania State University 2 , University Park, Pennsylvania 16802, USA

3. Materials Research Institute, The Pennsylvania State University 3 , University Park, Pennsylvania 16802, USA

Abstract

For two-dimensional (2D) materials, the exact thickness of the material often dictates its physical and chemical properties. The 2D quantum material WTe2 possesses properties that vary significantly from a single layer to multiple layers, yet it has a complicated crystal structure that makes it difficult to differentiate thicknesses in atomic-resolution images. Furthermore, its air sensitivity and susceptibility to electron beam-induced damage heighten the need for direct ways to determine the thickness and atomic structure without acquiring multiple measurements or transferring samples in ambient atmosphere. Here, we demonstrate a new method to identify the thickness up to ten van der Waals layers in Td-WTe2 using atomic-resolution high-angle annular dark-field scanning transmission electron microscopy image simulation. Our approach is based on analyzing the intensity line profiles of overlapping atomic columns and building a standard neural network model from the line profile features. We observe that it is possible to clearly distinguish between even and odd thicknesses (up to seven layers), without using machine learning, by comparing the deconvoluted peak intensity ratios or the area ratios. The standard neural network model trained on the line profile features allows thicknesses to be distinguished up to ten layers and exhibits an accuracy of up to 94% in the presence of Gaussian and Poisson noise. This method efficiently quantifies thicknesses in Td-WTe2, can be extended to related 2D materials, and provides a pathway to characterize precise atomic structures, including local thickness variations and atomic defects, for few-layer 2D materials with overlapping atomic column positions.

Funder

Pennsylvania State University

College of Earth and Mineral Sciences, Pennsylvania State University

Materials Research Institute, Pennsylvania State University

Publisher

AIP Publishing

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3