Abstract
AbstractScanning probe lithography (SPL) is a promising technology to fabricate high-resolution, customized and cost-effective features at the nanoscale. However, the quality of nano-fabrication, particularly the critical dimension, is significantly influenced by various SPL fabrication techniques and their corresponding process parameters. Meanwhile, the identification and measurement of nano-fabrication features are very time-consuming and subjective. To tackle these challenges, we propose a novel framework for process parameter optimization and feature segmentation of SPL via machine learning (ML). Different from traditional SPL techniques that rely on manual labeling-based experimental methods, the proposed framework intelligently extracts reliable and global information for statistical analysis to fine-tune and optimize process parameters. Based on the proposed framework, we realized the processing of smaller critical dimensions through the optimization of process parameters, and performed direct-write nano-lithography on a large scale. Furthermore, data-driven feature extraction and analysis could potentially provide guidance for other characterization methods and fabrication quality optimization.
Funder
National Natural Science Foundation of China
Publisher
Springer Science and Business Media LLC
Subject
Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献