A dual-mode fiber-shaped flexible capacitive strain sensor fabricated by direct ink writing technology for wearable and implantable health monitoring applications

Author:

Zhang Chi,Ouyang Wenyu,Zhang LeiORCID,Li Dachao

Abstract

AbstractFlexible fiber-shaped strain sensors show tremendous potential in wearable health monitoring and human‒machine interactions due to their compatibility with everyday clothing. However, the conductive and sensitive materials generated by traditional manufacturing methods to fabricate fiber-shaped strain sensors, including sequential coating and solution extrusion, exhibit limited stretchability, resulting in a limited stretch range and potential interface delamination. To address this issue, we fabricate a fiber-shaped flexible capacitive strain sensor (FSFCSS) by direct ink writing technology. Through this technology, we print parallel helical Ag electrodes on the surface of TPU tube fibers and encapsulate them with a high dielectric material BTO@Ecoflex, endowing FSFCSS with excellent dual-mode sensing performance. The FSFCSS can sense dual-model strain, namely, axial tensile strain and radial expansion strain. For axial tensile strain sensing, FSFCSS exhibits a wide detection range of 178%, a significant sensitivity of 0.924, a low detection limit of 0.6%, a low hysteresis coefficient of 1.44%, and outstanding mechanical stability. For radial expansion strain sensing, FSFCSS demonstrates a sensitivity of 0.00086 mmHg−1 and exhibits excellent responsiveness to static and dynamic expansion strain. Furthermore, FSFCSS was combined with a portable data acquisition circuit board for the acquisition of physiological signals and human‒machine interaction in a wearable wireless sensing system. To measure blood pressure and heart rate, FSFCSS was combined with a printed RF coil in series to fabricate a wireless hemodynamic sensor. This work enables simultaneous application in wearable and implantable health monitoring, thereby advancing the development of smart textiles.

Funder

National Natural Science Foundation of China

Publisher

Springer Science and Business Media LLC

Subject

Electrical and Electronic Engineering,Industrial and Manufacturing Engineering,Condensed Matter Physics,Materials Science (miscellaneous),Atomic and Molecular Physics, and Optics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3