A Machine-Learning-Algorithm-Assisted Intelligent System for Real-Time Wireless Respiratory Monitoring

Author:

Zhang Chi1,Zhang Lei1,Tian Yu1,Bao Bo1,Li Dachao1

Affiliation:

1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China

Abstract

Respiratory signals are basic indicators of human life and health that are used as effective biomarkers to detect respiratory diseases in clinics, including cardiopulmonary function, breathing disorders, and breathing system infections. Therefore, it is necessary to continuously measure respiratory signals. However, there is still a lack of effective portable electronic devices designed to meet the needs of daily respiratory monitoring. This study presents an intelligent, portable, and wireless respiratory monitoring system for real-time evaluation of human respiratory behaviors. The system consists of a triboelectric respiratory sensor; circuit board hardware for data acquisition, preprocessing, and wireless transmission; a machine learning algorithm for enhancing recognition accuracy; and a mobile terminal app. The triboelectric sensor—fabricated by the screen-printing method—is lightweight, non-invasive, and biocompatible. It provides a clear response to the frequency and intensity of respiratory airflow. The portable circuit board is reusable and cost-effective. The decision tree model algorithm is used to identify the respiratory signals with an average accuracy of 97.2%. The real-time signal and statistical results can be uploaded to a server network and displayed on various mobile terminals for body health warnings and advice. This work promotes the development of wearable health monitoring systems.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3