Affiliation:
1. State Key Laboratory of Precision Measuring Technology and Instruments, Tianjin University, Tianjin 300072, China
Abstract
Respiratory signals are basic indicators of human life and health that are used as effective biomarkers to detect respiratory diseases in clinics, including cardiopulmonary function, breathing disorders, and breathing system infections. Therefore, it is necessary to continuously measure respiratory signals. However, there is still a lack of effective portable electronic devices designed to meet the needs of daily respiratory monitoring. This study presents an intelligent, portable, and wireless respiratory monitoring system for real-time evaluation of human respiratory behaviors. The system consists of a triboelectric respiratory sensor; circuit board hardware for data acquisition, preprocessing, and wireless transmission; a machine learning algorithm for enhancing recognition accuracy; and a mobile terminal app. The triboelectric sensor—fabricated by the screen-printing method—is lightweight, non-invasive, and biocompatible. It provides a clear response to the frequency and intensity of respiratory airflow. The portable circuit board is reusable and cost-effective. The decision tree model algorithm is used to identify the respiratory signals with an average accuracy of 97.2%. The real-time signal and statistical results can be uploaded to a server network and displayed on various mobile terminals for body health warnings and advice. This work promotes the development of wearable health monitoring systems.
Funder
National Natural Science Foundation of China
Subject
Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science
Cited by
12 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献