Selecting Optimal Long Short-Term Memory (LSTM) Architectures for Online Estimation of Mean Arterial Pressure (MAP) in Patients Undergoing General Anesthesia

Author:

Ben Othman Ghada1ORCID,Copot Dana1ORCID,Yumuk Erhan1ORCID,Neckebroek Martine2,Ionescu Clara M.1ORCID

Affiliation:

1. Research Group on Dynamical Systems and Control, Department of Electromechanics, Systems and Metal Engineering, Ghent University, Tech Lane Science Park 125, 9052 Ghent, Belgium

2. Department of Anesthesia, Ghent University Hospital, Corneel Heymanslaan 10, 9000 Ghent, Belgium

Abstract

In the realm of anesthetic management during surgical procedures, the reliable estimation of mean arterial pressure (MAP) is critical for ensuring patient safety and optimizing drug administration. This paper investigates the determination of the optimal Long Short-Term Memory (LSTM) architectures aimed at enhancing the estimation of MAP. Using data from a trial involving 70 patients undergoing Total Intravenous Anesthesia (TIVA) provides the effect-site concentrations of Propofol and Remifentanil as key input variables for LSTM models. Our solution categorizes the selection strategies into three distinct methodologies: (i) a population-based method applying a single model across all patients, (ii) a patient-specific method tailoring models to individual physiological responses, and (iii) a novel category-specific method that groups patients based on the correlation between input variables, the effect-site concentrations of Propofol and Remifentanil, and MAP output. The novelty of this paper lies in the proposed method to identify the optimal architecture, evaluating 288 models to fine-tune the best model for each patient and category. Our findings suggest that the patient-specific model outperforms others, highlighting the benefits of personalized model architectures in medical artificial intelligence (AI) applications. The category-specific models provide a pragmatic solution, with reasonable accuracy and enhanced computational efficiency. By contrast, the population-based models, while efficient, have a lower estimation accuracy. This study confirms the significance of sophisticated LSTM architectures in medical AI, providing insights into their potential for advancing patient-specific anesthetic care by accurately online estimating MAP.

Funder

Ghent University

Flanders Research Foundation

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3