Pan-Cancer Classification of Gene Expression Data Based on Artificial Neural Network Model

Author:

Cava Claudia1,Salvatore Christian1,Castiglioni Isabella2ORCID

Affiliation:

1. Department of Science, Technology and Society, University School for Advanced Studies IUSS Pavia, Palazzo del Broletto, Piazza della Vittoria 15, 27100 Pavia, Italy

2. Department of Physics ‘‘Giuseppe Occhialini”, University of Milan-Bicocca, Piazza dell’Ateneo Nuovo, 20126 Milan, Italy

Abstract

Although precision classification is a vital issue for therapy, cancer diagnosis has been shown to have serious constraints. In this paper, we proposed a deep learning model based on gene expression data to perform a pan-cancer classification on 16 cancer types. We used principal component analysis (PCA) to decrease data dimensionality before building a neural network model for pan-cancer prediction. The performance of accuracy was monitored and optimized using the Adam algorithm. We compared the results of the model with a random forest classifier and XGBoost. The results show that the neural network model and random forest achieve high and similar classification performance (neural network mean accuracy: 0.84; random forest mean accuracy: 0.86; XGBoost mean accuracy: 0.90). Thus, we suggest future studies of neural network, random forest and XGBoost models for the detection of cancer in order to identify early treatment approaches to enhance cancer survival.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference41 articles.

1. Ferlay, J., Ervik, M., Lam, F., Colombet, M., Mery, L., Piñeros, M., Znaor, A., Soerjomataram, I., and Bray, F. (2021, February 01). Global Cancer Observatory: Cancer Today. Lyon: International Agency for Research on Cancer. Available online: https://gco.iarc.fr/today.

2. (2023, February 01). World Health Organization. Available online: https://www.who.int/news-room/fact-sheets/detail/cancer.

3. Gore, S., and Azad, R.K. (2022). CancerNet: A unified deep learning network for pan-cancer diagnostics. BMC Bioinform., 23.

4. In Silico perturbation of drug targets in pan-cancer analysis combining multiple networks and pathways;Cava;Gene,2019

5. Portrait of Tissue-Specific Coexpression Networks of Noncoding RNAs (miRNA and Lncrna) and mRNAs in Normal Tissues;Cava;Comput. Math. Methods Med.,2019

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3