High‐Performance Textile‐Based Capacitive Strain Sensors via Enhanced Vapor Phase Polymerization of Pyrrole and Their Application to Machine Learning‐Assisted Hand Gesture Recognition

Author:

Kateb Pierre12ORCID,Fornaciari Alice13,Ahmadizadeh Chakaveh1ORCID,Shokurov Alexander1ORCID,Cicoira Fabio2ORCID,Menon Carlo1ORCID

Affiliation:

1. Biomedical and Mobile Health Technology Lab Department of Health Sciences and Technology ETH Zurich Lengghalde 5 8008 Zürich Switzerland

2. Department of Chemical Engineering Polytechnique Montréal 2500 Chem. de Polytechnique Montréal QC H3T 1J4 Canada

3. Department of Electronics, Information and Bioengineering Politecnico di Milano Via Ponzio 34/5 20133 Milano Italy

Abstract

Sensors based on everyday textiles are extremely promising for wearable applications. The present work focuses on high‐performance textile‐based capacitive strain sensors. Specifically, a conductive textile is obtained via vapor‐phase polymerization of pyrrole, in which the usage of methanol co‐vapor and the addition of imidazole to the iron chloride oxidant solution are shown to maximize conductivity. A technique to provide insulation and mechanical resistance using thermoplastic polyurethane and polystyrene‐block‐polyisoprene‐block‐polystyrene/barium titanate composite is developed. Such insulated conductive elastics are then used to fabricate highly sensitive twisted yarn capacitive sensors. A textile glove is subsequently embedded with such sensors. The wireless measurement and transmission system demonstrate efficacy in capturing capacitance variations upon strain and monitoring hand motions. A machine learning model to recognize 12 gestures is implemented—100% classification accuracy is obtained.

Funder

Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung

Mitacs

Natural Sciences and Engineering Research Council of Canada

Publisher

Wiley

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3